TPTP Problem File: NUN046^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN046^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number theory
% Problem : MONOIDAL_AC
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : MONOIDAL_AC_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.1.0
% Syntax : Number of formulae : 6 ( 2 unt; 3 typ; 0 def)
% Number of atoms : 12 ( 10 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 57 ( 0 ~; 0 |; 6 &; 50 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 25 ( 0 ^; 22 !; 0 ?; 25 :)
% ( 3 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,
'const/trivia/I':
!>[A: $tType] : ( A > A ) ).
thf('thf_const_const/iterate/neutral',type,
'const/iterate/neutral':
!>[A: $tType] : ( ( A > A > A ) > A ) ).
thf('thf_const_const/iterate/monoidal',type,
'const/iterate/monoidal':
!>[A: $tType] : ( ( A > A > A ) > $o ) ).
thf('thm/trivia/I_THM_',axiom,
! [A: $tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) ).
thf('thm/iterate/monoidal_',axiom,
! [A: $tType,A0: A > A > A] :
( ( 'const/iterate/monoidal' @ A @ A0 )
= ( ! [A1: A,A2: A] :
( ( A0 @ A1 @ A2 )
= ( A0 @ A2 @ A1 ) )
& ! [A1: A,A2: A,A3: A] :
( ( A0 @ A1 @ ( A0 @ A2 @ A3 ) )
= ( A0 @ ( A0 @ A1 @ A2 ) @ A3 ) )
& ! [A1: A] :
( ( A0 @ ( 'const/iterate/neutral' @ A @ A0 ) @ A1 )
= A1 ) ) ) ).
thf('thm/iterate/MONOIDAL_AC_',conjecture,
! [A: $tType,A0: A > A > A] :
( ( 'const/iterate/monoidal' @ A @ A0 )
=> ( ! [A1: A] :
( ( A0 @ ( 'const/iterate/neutral' @ A @ A0 ) @ A1 )
= A1 )
& ! [A1: A] :
( ( A0 @ A1 @ ( 'const/iterate/neutral' @ A @ A0 ) )
= A1 )
& ! [A1: A,A2: A] :
( ( A0 @ A1 @ A2 )
= ( A0 @ A2 @ A1 ) )
& ! [A1: A,A2: A,A3: A] :
( ( A0 @ ( A0 @ A1 @ A2 ) @ A3 )
= ( A0 @ A1 @ ( A0 @ A2 @ A3 ) ) )
& ! [A1: A,A2: A,A3: A] :
( ( A0 @ A1 @ ( A0 @ A2 @ A3 ) )
= ( A0 @ A2 @ ( A0 @ A1 @ A3 ) ) ) ) ) ).
%------------------------------------------------------------------------------