TPTP Problem File: NUN045^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN045^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory (Modular arithmetic)
% Problem : International Mathematical Olympiad, 2012, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Find all positive integers n for which there exist non-negative
% integers a1, a2, ..., a_n such that 1/(2^a1) + 1/(2^a2) + ... +
% 1/(2^a_n) = 1/(3^a1) + 2/(3^a2) + ... + n/(3^a_n) = 1.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2012-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6491 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39628 ( 104 ~; 233 |;1175 &;35990 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4479 ( 372 atm;1209 fun; 958 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1171 usr; 69 con; 0-9 aty)
% Number of variables : 8060 ( 409 ^;7085 !; 430 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-10-21
% : Answer
% ^ [V_n_dot_1: $int] :
% ? [V_m: $int] :
% ( ( V_n_dot_1
% = ( $sum @ ( $product @ 4 @ V_m ) @ 1 ) )
% | ( V_n_dot_1
% = ( $sum @ ( $product @ 4 @ V_m ) @ 2 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $int
@ ^ [V_n: $int] :
( ( $less @ 0 @ V_n )
& ? [V_a: 'ListOf' @ $int] :
( ( ( 'list-len/1' @ $int @ V_a )
= V_n )
& ( ( 'rat.sum/1'
@ ( 'map/2' @ $int @ $rat
@ ^ [V_x_dot_0: $int] : ( $quotient @ ( $to_rat @ 1 ) @ ( $to_rat @ ( 'int.^/2' @ 2 @ V_x_dot_0 ) ) )
@ V_a ) )
= 1/1 )
& ( ( 'rat.sum/1'
@ ( 'zip-with/3' @ $int @ $int @ $rat
@ ^ [V_n_dot_0: $int,V_x: $int] : ( $quotient @ ( $to_rat @ V_n_dot_0 ) @ ( $to_rat @ ( 'int.^/2' @ 3 @ V_x ) ) )
@ ( 'int.iota/2' @ 1 @ V_n )
@ V_a ) )
= 1/1 ) ) ) ) ).
%------------------------------------------------------------------------------