TPTP Problem File: NUN041^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN041^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory (Modular arithmetic)
% Problem : International Mathematical Olympiad, 2003, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Show that for each prime p, there exists a prime q such that n^p
% - p is not divisible by q for any positive integer n.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2003-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6403 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39606 ( 105 ~; 233 |;1173 &;35967 @)
% (1095 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 372 atm;1204 fun; 952 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8058 ( 405 ^;7087 !; 430 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-11-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_p: $int] :
( ( 'int.is-prime/1' @ V_p )
=> ? [V_q: $int] :
( ( 'int.is-prime/1' @ V_q )
& ! [V_n: $int] :
( ( $greater @ V_n @ 0 )
=> ~ ( 'int.is-divisible-by/2' @ V_q @ ( $difference @ ( 'int.^/2' @ V_n @ V_p ) @ V_p ) ) ) ) ) ).
%------------------------------------------------------------------------------