TPTP Problem File: NUN039^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN039^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory
% Problem : International Mathematical Olympiad, 2001, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Let a, b, c, d be integers with a > b > c > d > 0. Suppose that
% ac + bd = (b + d + a - c)(b + d - a + c). Prove that ab + cd is
% not prime.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2001-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6390 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39635 ( 105 ~; 233 |;1176 &;35994 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4485 ( 375 atm;1218 fun; 952 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8059 ( 405 ^;7089 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Yiyang Zhan;
% Generated: 2014-11-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_a: $int,V_b: $int,V_c: $int,V_d: $int] :
( ( ( $greater @ V_a @ V_b )
& ( $greater @ V_b @ V_c )
& ( $greater @ V_c @ V_d )
& ( $greater @ V_d @ 0 )
& ( ( $sum @ ( $product @ V_a @ V_c ) @ ( $product @ V_b @ V_d ) )
= ( $product @ ( $sum @ V_b @ ( $sum @ V_d @ ( $sum @ V_a @ ( $uminus @ V_c ) ) ) ) @ ( $sum @ V_b @ ( $sum @ V_d @ ( $sum @ ( $uminus @ V_a ) @ V_c ) ) ) ) ) )
=> ~ ( 'int.is-prime/1' @ ( $sum @ ( $product @ V_a @ V_b ) @ ( $product @ V_c @ V_d ) ) ) ) ).
%------------------------------------------------------------------------------