TPTP Problem File: NUN038^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN038^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory
% Problem : International Mathematical Olympiad, 1994, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Determine all ordered pairs (m, n) of positive integers such
% that n^3+1/mn-1 is an integer.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1994-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 7877 (2209 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39620 ( 104 ~; 233 |;1175 &;35982 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4473 ( 373 atm;1206 fun; 956 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1212 (1169 usr; 66 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7085 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-12
% : Answer
% ^ [V_l_dot_0: ( 'ListOf' @ $int )] :
% ( ( V_l_dot_0
% = ( 'cons/2' @ $int @ 1 @ ( 'cons/2' @ $int @ 2 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 1 @ ( 'cons/2' @ $int @ 3 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 2 @ ( 'cons/2' @ $int @ 1 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 2 @ ( 'cons/2' @ $int @ 2 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 2 @ ( 'cons/2' @ $int @ 5 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 3 @ ( 'cons/2' @ $int @ 1 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 5 @ ( 'cons/2' @ $int @ 2 @ ( 'nil/0' @ $int ) ) ) )
% | ( V_l_dot_0
% = ( 'cons/2' @ $int @ 5 @ ( 'cons/2' @ $int @ 3 @ ( 'nil/0' @ $int ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $int )
@ ^ [V_l: 'ListOf' @ $int] :
? [V_m: $int,V_n: $int] :
( ( V_l
= ( 'cons/2' @ $int @ V_m @ ( 'cons/2' @ $int @ V_n @ ( 'nil/0' @ $int ) ) ) )
& ( $less @ 0 @ V_m )
& ( $less @ 0 @ V_n )
& ( 'int.is-divisible-by/2' @ ( $sum @ ( 'int.^/2' @ V_n @ 3 ) @ 1 ) @ ( $difference @ ( $product @ V_m @ V_n ) @ 1 ) ) ) ) ).
%------------------------------------------------------------------------------