TPTP Problem File: NUN037^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN037^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory
% Problem : International Mathematical Olympiad, 1986, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let d be any positive integer not equal to 2, 5, or 13. Show
% that one can find distinct a, b in the set {2, 5, 13, d} such
% that ab - 1 is not a perfect square.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1986-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 7851 (2212 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39643 ( 109 ~; 233 |;1178 &;35996 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4478 ( 372 atm;1205 fun; 962 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1167 usr; 65 con; 0-9 aty)
% Number of variables : 8058 ( 405 ^;7086 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-18
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_d: $int] :
( ( ( $greater @ V_d @ 0 )
& ( V_d != 2 )
& ( V_d != 5 )
& ( V_d != 13 ) )
=> ? [V_a: $int,V_b: $int] :
( ( 'member/2' @ $int @ V_a @ ( 'cons/2' @ $int @ 2 @ ( 'cons/2' @ $int @ 5 @ ( 'cons/2' @ $int @ 13 @ ( 'cons/2' @ $int @ V_d @ ( 'nil/0' @ $int ) ) ) ) ) )
& ( 'member/2' @ $int @ V_b @ ( 'cons/2' @ $int @ 2 @ ( 'cons/2' @ $int @ 5 @ ( 'cons/2' @ $int @ 13 @ ( 'cons/2' @ $int @ V_d @ ( 'nil/0' @ $int ) ) ) ) ) )
& ( V_a != V_b )
& ~ ( 'int.is-square-number/1' @ ( $difference @ ( $product @ V_a @ V_b ) @ 1 ) ) ) ) ).
%------------------------------------------------------------------------------