TPTP Problem File: NUN036^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN036^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory (Modular arithmetic)
% Problem : International Mathematical Olympiad, 1984, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Find one pair of positive integers a and b such that:
% (i) ab(a + b) is not divisible by 7; (ii) (a + b)^7 - a^7 - b^7
% is divisible by 7^7. Justify your answer.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1984-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6406 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39624 ( 105 ~; 233 |;1175 &;35985 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4479 ( 373 atm;1209 fun; 959 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1165 usr; 62 con; 0-9 aty)
% Number of variables : 8057 ( 405 ^;7085 !; 431 ?;8057 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-20
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
? [V_a: $int,V_b: $int] :
( ( $greater @ V_a @ 0 )
& ( $greater @ V_b @ 0 )
& ~ ( 'int.is-divisible-by/2' @ ( $product @ V_a @ ( $product @ V_b @ ( $sum @ V_a @ V_b ) ) ) @ 7 )
& ( 'int.is-divisible-by/2' @ ( $difference @ ( $difference @ ( 'int.^/2' @ ( $sum @ V_a @ V_b ) @ 7 ) @ ( 'int.^/2' @ V_a @ 7 ) ) @ ( 'int.^/2' @ V_b @ 7 ) ) @ ( 'int.^/2' @ 7 @ 7 ) ) ) ).
%------------------------------------------------------------------------------