TPTP Problem File: NUN032^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN032^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory (Numeral systems)
% Problem : International Mathematical Olympiad, 1960, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Determine all three-digit numbers N having the property that N
% is divisible by 11, and N/11 is equal to the sum of the squares of
% the digits of N.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1960-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6411 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39636 ( 104 ~; 233 |;1180 &;35993 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4491 ( 377 atm;1210 fun; 964 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1166 usr; 65 con; 0-9 aty)
% Number of variables : 8059 ( 406 ^;7085 !; 432 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 8; Author: Jumma Kudo;
% Generated: 2014-12-04
% : Answer
% ^ [V_N_dot_0: $int] :
% ( ( V_N_dot_0 = 550 )
% | ( V_N_dot_0 = 803 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $int
@ ^ [V_N: $int] :
? [V_n1: $int,V_n2: $int,V_n3: $int] :
( ( $lesseq @ 1 @ V_n1 )
& ( $lesseq @ V_n1 @ 9 )
& ( $lesseq @ 0 @ V_n2 )
& ( $lesseq @ V_n2 @ 9 )
& ( $lesseq @ 0 @ V_n3 )
& ( $lesseq @ V_n3 @ 9 )
& ( V_N
= ( $sum @ ( $product @ 100 @ V_n1 ) @ ( $sum @ ( $product @ 10 @ V_n2 ) @ V_n3 ) ) )
& ( 'int.is-divisible-by/2' @ V_N @ 11 )
& ( ( $quotient_f @ V_N @ 11 )
= ( $sum @ ( 'int.^/2' @ V_n1 @ 2 ) @ ( $sum @ ( 'int.^/2' @ V_n2 @ 2 ) @ ( 'int.^/2' @ V_n3 @ 2 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------