TPTP Problem File: NUN031^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN031^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Number Theory (Divisors and multiples)
% Problem : International Mathematical Olympiad, 1959, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Prove that the fraction 21n+4/14n+3 is irreducible for every
% natural number n.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1959-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6386 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39604 ( 104 ~; 233 |;1172 &;35968 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4470 ( 371 atm;1207 fun; 955 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1210 (1165 usr; 64 con; 0-9 aty)
% Number of variables : 8056 ( 405 ^;7086 !; 429 ?;8056 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: PA; Score: 5; Author: Jumma Kudo;
% Generated: 2014-12-09
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
! [V_n: $int] :
( ( 'int.is-natural-number/1' @ V_n )
=> ( 'int.are-coprime/2' @ ( $sum @ ( $product @ 21 @ V_n ) @ 4 ) @ ( $sum @ ( $product @ 14 @ V_n ) @ 3 ) ) ) ).
%------------------------------------------------------------------------------