TPTP Problem File: NUN019+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUN019+1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Number Theory
% Problem : Peano greater and unequal
% Version : Especial.
% English :
% Refs :
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 1.00 v6.3.0
% Syntax : Number of formulae : 3 ( 1 unt; 0 def)
% Number of atoms : 5 ( 1 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 3 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 5 ( 5 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments : Stephan Schulz says "I've looked at the problem, and I cannot find
% a way in which plain superposition with selection will terminate
% on this problem."
% : Uwe Waldmann says "It looks like a nice application for a
% superposition calculus with schematic terms."
% : Christoph Weidenbach says "This is an inductive property so in
% general no way for first-order reasoning."
% : Nicolas Peltier says "From a theoretical point of view,
% superposition with term schematization can terminate on your
% example."
%------------------------------------------------------------------------------
fof(greater_0,axiom,
! [X] : greater(s(X),X) ).
fof(greater_1,axiom,
! [X,Y] :
( greater(X,Y)
=> greater(s(X),Y) ) ).
fof(not_equal_0,axiom,
! [X,Y] :
( greater(X,Y)
=> X != Y ) ).
%------------------------------------------------------------------------------