TPTP Problem File: NUM979_5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM979_5 : TPTP v9.0.0. Released v6.0.0.
% Domain : Number Theory
% Problem : Sum of two squares line 125
% Version : Especial.
% English :
% Refs : [BN10] Boehme & Nipkow (2010), Sledgehammer: Judgement Day
% : [Bla13] Blanchette (2011), Email to Geoff Sutcliffe
% Source : [Bla13]
% Names : s2s_125 [Bla13]
% Status : Unknown
% Rating : 1.00 v6.4.0
% Syntax : Number of formulae : 156 ( 59 unt; 37 typ; 0 def)
% Number of atoms : 216 ( 84 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 114 ( 17 ~; 2 |; 16 &)
% ( 32 <=>; 47 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 10 ( 2 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 15 ( 11 >; 4 *; 0 +; 0 <<)
% Number of predicates : 18 ( 17 usr; 1 prp; 0-3 aty)
% Number of functors : 17 ( 17 usr; 8 con; 0-3 aty)
% Number of variables : 183 ( 161 !; 2 ?; 183 :)
% ( 20 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TF1_UNK_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2011-12-13 16:24:50
%------------------------------------------------------------------------------
%----Should-be-implicit typings (3)
tff(ty_tc_HOL_Obool,type,
bool: $tType ).
tff(ty_tc_Int_Oint,type,
int: $tType ).
tff(ty_tc_Nat_Onat,type,
nat: $tType ).
%----Explicit typings (34)
tff(sy_cl_Int_Onumber,type,
number:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring,type,
semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Int_Onumber__ring,type,
number_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Int_Oring__char__0,type,
ring_char_0:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Osemiring__1,type,
semiring_1:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Omonoid__mult,type,
monoid_mult:
!>[A: $tType] : $o ).
tff(sy_cl_Int_Onumber__semiring,type,
number_semiring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__ring,type,
linordered_ring:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Olinordered__ring__strict,type,
linord581940658strict:
!>[A: $tType] : $o ).
tff(sy_cl_Rings_Oring__1__no__zero__divisors,type,
ring_11004092258visors:
!>[A: $tType] : $o ).
tff(sy_cl_Groups_Olinordered__ab__group__add,type,
linord219039673up_add:
!>[A: $tType] : $o ).
tff(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
tff(sy_c_Groups_Oplus__class_Oplus,type,
plus_plus:
!>[A: $tType] : ( ( A * A ) > A ) ).
tff(sy_c_Groups_Otimes__class_Otimes,type,
times_times:
!>[A: $tType] : ( ( A * A ) > A ) ).
tff(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
tff(sy_c_IntPrimes_Ozprime,type,
zprime: int > $o ).
tff(sy_c_Int_OBit0,type,
bit0: int > int ).
tff(sy_c_Int_OBit1,type,
bit1: int > int ).
tff(sy_c_Int_OPls,type,
pls: int ).
tff(sy_c_Int_Onumber__class_Onumber__of,type,
number_number_of:
!>[A: $tType] : ( int > A ) ).
tff(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
tff(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( ( A * A ) > $o ) ).
tff(sy_c_Power_Opower__class_Opower,type,
power_power:
!>[A: $tType] : ( ( A * nat ) > A ) ).
tff(sy_c_TwoSquares__Mirabelle__poiayhyqls_Ois__sum2sq,type,
twoSqu1567020053sum2sq: int > $o ).
tff(sy_c_fFalse,type,
fFalse: bool ).
tff(sy_c_fTrue,type,
fTrue: bool ).
tff(sy_c_pp,type,
pp: bool > $o ).
tff(sy_v_m,type,
m: int ).
tff(sy_v_n____,type,
n: nat ).
tff(sy_v_s____,type,
s: int ).
tff(sy_v_t____,type,
t: int ).
tff(sy_v_thesis____,type,
thesis: $o ).
tff(sy_v_tn____,type,
tn: nat ).
%----Relevant facts (98)
tff(fact_0_tn0,axiom,
ord_less(nat,zero_zero(nat),tn) ).
tff(fact_1_n0,axiom,
ord_less(nat,zero_zero(nat),n) ).
tff(fact_2_IH,axiom,
( ord_less(int,plus_plus(int,one_one(int),semiring_1_of_nat(int,n)),plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)))
& twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,n)))) ) ).
tff(fact_3_t1,axiom,
ord_less(int,one_one(int),t) ).
tff(fact_4_nQ1,axiom,
~ twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,zero_zero(nat))))) ).
tff(fact_5_smaller_I2_J,axiom,
~ ( ord_less(int,plus_plus(int,one_one(int),semiring_1_of_nat(int,n)),plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)))
=> ~ twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,n)))) ) ).
tff(fact_6_p,axiom,
zprime(plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).
tff(fact_7_power2__eq__square__number__of,axiom,
! [B: $tType] :
( ( monoid_mult(B)
& number(B) )
=> ! [W: int] : ( power_power(B,number_number_of(B,W),number_number_of(nat,bit0(bit1(pls)))) = times_times(B,number_number_of(B,W),number_number_of(B,W)) ) ) ).
tff(fact_8_one__power2,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( power_power(A,one_one(A),number_number_of(nat,bit0(bit1(pls)))) = one_one(A) ) ) ).
tff(fact_9_add__special_I2_J,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [W: int] : ( plus_plus(A,one_one(A),number_number_of(A,W)) = number_number_of(A,plus_plus(int,bit1(pls),W)) ) ) ).
tff(fact_10_add__special_I3_J,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [V: int] : ( plus_plus(A,number_number_of(A,V),one_one(A)) = number_number_of(A,plus_plus(int,V,bit1(pls))) ) ) ).
tff(fact_11_one__add__one__is__two,axiom,
! [A: $tType] :
( number_ring(A)
=> ( plus_plus(A,one_one(A),one_one(A)) = number_number_of(A,bit0(bit1(pls))) ) ) ).
tff(fact_12_mult__Bit1,axiom,
! [L1: int,K: int] : ( times_times(int,bit1(K),L1) = plus_plus(int,bit0(times_times(int,K,L1)),L1) ) ).
tff(fact_13_numeral__1__eq__1,axiom,
! [A: $tType] :
( number_ring(A)
=> ( number_number_of(A,bit1(pls)) = one_one(A) ) ) ).
tff(fact_14_qf1pt,axiom,
twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),t)) ).
tff(fact_15_zadd__power2,axiom,
! [B1: int,A1: int] : ( power_power(int,plus_plus(int,A1,B1),number_number_of(nat,bit0(bit1(pls)))) = plus_plus(int,plus_plus(int,power_power(int,A1,number_number_of(nat,bit0(bit1(pls)))),times_times(int,times_times(int,number_number_of(int,bit0(bit1(pls))),A1),B1)),power_power(int,B1,number_number_of(nat,bit0(bit1(pls))))) ) ).
tff(fact_16_zadd__power3,axiom,
! [B1: int,A1: int] : ( power_power(int,plus_plus(int,A1,B1),number_number_of(nat,bit1(bit1(pls)))) = plus_plus(int,plus_plus(int,plus_plus(int,power_power(int,A1,number_number_of(nat,bit1(bit1(pls)))),times_times(int,times_times(int,number_number_of(int,bit1(bit1(pls))),power_power(int,A1,number_number_of(nat,bit0(bit1(pls))))),B1)),times_times(int,times_times(int,number_number_of(int,bit1(bit1(pls))),A1),power_power(int,B1,number_number_of(nat,bit0(bit1(pls)))))),power_power(int,B1,number_number_of(nat,bit1(bit1(pls))))) ) ).
tff(fact_17_power2__sum,axiom,
! [A: $tType] :
( number_semiring(A)
=> ! [Y2: A,X2: A] : ( power_power(A,plus_plus(A,X2,Y2),number_number_of(nat,bit0(bit1(pls)))) = plus_plus(A,plus_plus(A,power_power(A,X2,number_number_of(nat,bit0(bit1(pls)))),power_power(A,Y2,number_number_of(nat,bit0(bit1(pls))))),times_times(A,times_times(A,number_number_of(A,bit0(bit1(pls))),X2),Y2)) ) ) ).
tff(fact_18_add__Bit0__Bit1,axiom,
! [L1: int,K: int] : ( plus_plus(int,bit0(K),bit1(L1)) = bit1(plus_plus(int,K,L1)) ) ).
tff(fact_19_eq__number__of,axiom,
! [A: $tType] :
( ( number_ring(A)
& ring_char_0(A) )
=> ! [Y1: int,X1: int] :
( ( number_number_of(A,X1) = number_number_of(A,Y1) )
<=> ( X1 = Y1 ) ) ) ).
tff(fact_20_rel__simps_I51_J,axiom,
! [L: int,K3: int] :
( ( bit1(K3) = bit1(L) )
<=> ( K3 = L ) ) ).
tff(fact_21_rel__simps_I48_J,axiom,
! [L: int,K3: int] :
( ( bit0(K3) = bit0(L) )
<=> ( K3 = L ) ) ).
tff(fact_22_double__eq__0__iff,axiom,
! [A: $tType] :
( linord219039673up_add(A)
=> ! [A2: A] :
( ( plus_plus(A,A2,A2) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
tff(fact_23_rel__simps_I46_J,axiom,
! [K: int] : ( bit1(K) != pls ) ).
tff(fact_24_rel__simps_I39_J,axiom,
! [L1: int] : ( pls != bit1(L1) ) ).
tff(fact_25_rel__simps_I50_J,axiom,
! [L1: int,K: int] : ( bit1(K) != bit0(L1) ) ).
tff(fact_26_rel__simps_I49_J,axiom,
! [L1: int,K: int] : ( bit0(K) != bit1(L1) ) ).
tff(fact_27_rel__simps_I44_J,axiom,
! [K3: int] :
( ( bit0(K3) = pls )
<=> ( K3 = pls ) ) ).
tff(fact_28_rel__simps_I38_J,axiom,
! [L: int] :
( ( pls = bit0(L) )
<=> ( pls = L ) ) ).
tff(fact_29_Bit0__Pls,axiom,
bit0(pls) = pls ).
tff(fact_30_rel__simps_I17_J,axiom,
! [L: int,K3: int] :
( ord_less(int,bit1(K3),bit1(L))
<=> ord_less(int,K3,L) ) ).
tff(fact_31_rel__simps_I2_J,axiom,
~ ord_less(int,pls,pls) ).
tff(fact_32_rel__simps_I14_J,axiom,
! [L: int,K3: int] :
( ord_less(int,bit0(K3),bit0(L))
<=> ord_less(int,K3,L) ) ).
tff(fact_33_mult__Pls,axiom,
! [W: int] : ( times_times(int,pls,W) = pls ) ).
tff(fact_34_mult__Bit0,axiom,
! [L1: int,K: int] : ( times_times(int,bit0(K),L1) = bit0(times_times(int,K,L1)) ) ).
tff(fact_35_add__Bit0__Bit0,axiom,
! [L1: int,K: int] : ( plus_plus(int,bit0(K),bit0(L1)) = bit0(plus_plus(int,K,L1)) ) ).
tff(fact_36_left__distrib__number__of,axiom,
! [B: $tType] :
( ( number(B)
& semiring(B) )
=> ! [V: int,B1: B,A1: B] : ( times_times(B,plus_plus(B,A1,B1),number_number_of(B,V)) = plus_plus(B,times_times(B,A1,number_number_of(B,V)),times_times(B,B1,number_number_of(B,V))) ) ) ).
tff(fact_37_right__distrib__number__of,axiom,
! [B: $tType] :
( ( number(B)
& semiring(B) )
=> ! [C: B,B1: B,V: int] : ( times_times(B,number_number_of(B,V),plus_plus(B,B1,C)) = plus_plus(B,times_times(B,number_number_of(B,V),B1),times_times(B,number_number_of(B,V),C)) ) ) ).
tff(fact_38_number__of__Pls,axiom,
! [A: $tType] :
( number_ring(A)
=> ( number_number_of(A,pls) = zero_zero(A) ) ) ).
tff(fact_39_less__number__of,axiom,
! [A: $tType] :
( ( number_ring(A)
& linordered_idom(A) )
=> ! [Y1: int,X1: int] :
( ord_less(A,number_number_of(A,X1),number_number_of(A,Y1))
<=> ord_less(int,X1,Y1) ) ) ).
tff(fact_40_mult__number__of__left,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [Z1: A,W: int,V: int] : ( times_times(A,number_number_of(A,V),times_times(A,number_number_of(A,W),Z1)) = times_times(A,number_number_of(A,times_times(int,V,W)),Z1) ) ) ).
tff(fact_41_arith__simps_I32_J,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [W: int,V: int] : ( times_times(A,number_number_of(A,V),number_number_of(A,W)) = number_number_of(A,times_times(int,V,W)) ) ) ).
tff(fact_42_add__number__of__left,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [Z1: A,W: int,V: int] : ( plus_plus(A,number_number_of(A,V),plus_plus(A,number_number_of(A,W),Z1)) = plus_plus(A,number_number_of(A,plus_plus(int,V,W)),Z1) ) ) ).
tff(fact_43_add__number__of__eq,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [W: int,V: int] : ( plus_plus(A,number_number_of(A,V),number_number_of(A,W)) = number_number_of(A,plus_plus(int,V,W)) ) ) ).
tff(fact_44_rel__simps_I12_J,axiom,
! [K3: int] :
( ord_less(int,bit1(K3),pls)
<=> ord_less(int,K3,pls) ) ).
tff(fact_45_nat__number__of__Pls,axiom,
number_number_of(nat,pls) = zero_zero(nat) ).
tff(fact_46_rel__simps_I16_J,axiom,
! [L: int,K3: int] :
( ord_less(int,bit1(K3),bit0(L))
<=> ord_less(int,K3,L) ) ).
tff(fact_47_rel__simps_I10_J,axiom,
! [K3: int] :
( ord_less(int,bit0(K3),pls)
<=> ord_less(int,K3,pls) ) ).
tff(fact_48_rel__simps_I4_J,axiom,
! [K3: int] :
( ord_less(int,pls,bit0(K3))
<=> ord_less(int,pls,K3) ) ).
tff(fact_49_nat__numeral__1__eq__1,axiom,
number_number_of(nat,bit1(pls)) = one_one(nat) ).
tff(fact_50_t__l__p,axiom,
ord_less(int,t,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).
tff(fact_51_add__Bit1__Bit0,axiom,
! [L1: int,K: int] : ( plus_plus(int,bit1(K),bit0(L1)) = bit1(plus_plus(int,K,L1)) ) ).
tff(fact_52_nat__1__add__1,axiom,
plus_plus(nat,one_one(nat),one_one(nat)) = number_number_of(nat,bit0(bit1(pls))) ).
tff(fact_53_less__nat__number__of,axiom,
! [V3: int,V2: int] :
( ord_less(nat,number_number_of(nat,V2),number_number_of(nat,V3))
<=> ( ( ord_less(int,V2,V3)
=> ord_less(int,pls,V3) )
& ord_less(int,V2,V3) ) ) ).
tff(fact_54_add__nat__number__of,axiom,
! [V1: int,V: int] :
( ( ord_less(int,V,pls)
=> ( plus_plus(nat,number_number_of(nat,V),number_number_of(nat,V1)) = number_number_of(nat,V1) ) )
& ( ~ ord_less(int,V,pls)
=> ( ( ord_less(int,V1,pls)
=> ( plus_plus(nat,number_number_of(nat,V),number_number_of(nat,V1)) = number_number_of(nat,V) ) )
& ( ~ ord_less(int,V1,pls)
=> ( plus_plus(nat,number_number_of(nat,V),number_number_of(nat,V1)) = number_number_of(nat,plus_plus(int,V,V1)) ) ) ) ) ) ).
tff(fact_55_less__special_I3_J,axiom,
! [A: $tType] :
( ( number_ring(A)
& linordered_idom(A) )
=> ! [X1: int] :
( ord_less(A,number_number_of(A,X1),zero_zero(A))
<=> ord_less(int,X1,pls) ) ) ).
tff(fact_56_less__special_I1_J,axiom,
! [A: $tType] :
( ( number_ring(A)
& linordered_idom(A) )
=> ! [Y1: int] :
( ord_less(A,zero_zero(A),number_number_of(A,Y1))
<=> ord_less(int,pls,Y1) ) ) ).
tff(fact_57_less__0__number__of,axiom,
! [V2: int] :
( ord_less(nat,zero_zero(nat),number_number_of(nat,V2))
<=> ord_less(int,pls,V2) ) ).
tff(fact_58_mult__nat__number__of,axiom,
! [V1: int,V: int] :
( ( ord_less(int,V,pls)
=> ( times_times(nat,number_number_of(nat,V),number_number_of(nat,V1)) = zero_zero(nat) ) )
& ( ~ ord_less(int,V,pls)
=> ( times_times(nat,number_number_of(nat,V),number_number_of(nat,V1)) = number_number_of(nat,times_times(int,V,V1)) ) ) ) ).
tff(fact_59_less__special_I4_J,axiom,
! [A: $tType] :
( ( number_ring(A)
& linordered_idom(A) )
=> ! [X1: int] :
( ord_less(A,number_number_of(A,X1),one_one(A))
<=> ord_less(int,X1,bit1(pls)) ) ) ).
tff(fact_60_less__special_I2_J,axiom,
! [A: $tType] :
( ( number_ring(A)
& linordered_idom(A) )
=> ! [Y1: int] :
( ord_less(A,one_one(A),number_number_of(A,Y1))
<=> ord_less(int,bit1(pls),Y1) ) ) ).
tff(fact_61_zero__eq__power2,axiom,
! [A: $tType] :
( ring_11004092258visors(A)
=> ! [A2: A] :
( ( power_power(A,A2,number_number_of(nat,bit0(bit1(pls)))) = zero_zero(A) )
<=> ( A2 = zero_zero(A) ) ) ) ).
tff(fact_62_zero__power2,axiom,
! [A: $tType] :
( semiring_1(A)
=> ( power_power(A,zero_zero(A),number_number_of(nat,bit0(bit1(pls)))) = zero_zero(A) ) ) ).
tff(fact_63_zero__less__power2,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ord_less(A,zero_zero(A),power_power(A,A2,number_number_of(nat,bit0(bit1(pls)))))
<=> ( A2 != zero_zero(A) ) ) ) ).
tff(fact_64_t,axiom,
plus_plus(int,power_power(int,s,number_number_of(nat,bit0(bit1(pls)))),one_one(int)) = times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),t) ).
tff(fact_65_calculation_I2_J,axiom,
( ( t = one_one(int) )
=> ? [X3: int,Y3: int] : ( plus_plus(int,power_power(int,X3,number_number_of(nat,bit0(bit1(pls)))),power_power(int,Y3,number_number_of(nat,bit0(bit1(pls))))) = plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)) ) ) ).
tff(fact_66_zpower__zpower,axiom,
! [Z1: nat,Y2: nat,X2: int] : ( power_power(int,power_power(int,X2,Y2),Z1) = power_power(int,X2,times_times(nat,Y2,Z1)) ) ).
tff(fact_67_even__less__0__iff,axiom,
! [A: $tType] :
( linordered_idom(A)
=> ! [A2: A] :
( ord_less(A,plus_plus(A,A2,A2),zero_zero(A))
<=> ord_less(A,A2,zero_zero(A)) ) ) ).
tff(fact_68_zless__int,axiom,
! [Na: nat,Ma: nat] :
( ord_less(int,semiring_1_of_nat(int,Ma),semiring_1_of_nat(int,Na))
<=> ord_less(nat,Ma,Na) ) ).
tff(fact_69_zpower__int,axiom,
! [N: nat,M: nat] : ( power_power(int,semiring_1_of_nat(int,M),N) = semiring_1_of_nat(int,power_power(nat,M,N)) ) ).
tff(fact_70_int__power,axiom,
! [N: nat,M: nat] : ( semiring_1_of_nat(int,power_power(nat,M,N)) = power_power(int,semiring_1_of_nat(int,M),N) ) ).
tff(fact_71_zmult__int,axiom,
! [N: nat,M: nat] : ( times_times(int,semiring_1_of_nat(int,M),semiring_1_of_nat(int,N)) = semiring_1_of_nat(int,times_times(nat,M,N)) ) ).
tff(fact_72_int__mult,axiom,
! [N: nat,M: nat] : ( semiring_1_of_nat(int,times_times(nat,M,N)) = times_times(int,semiring_1_of_nat(int,M),semiring_1_of_nat(int,N)) ) ).
tff(fact_73_zadd__int__left,axiom,
! [Z1: int,N: nat,M: nat] : ( plus_plus(int,semiring_1_of_nat(int,M),plus_plus(int,semiring_1_of_nat(int,N),Z1)) = plus_plus(int,semiring_1_of_nat(int,plus_plus(nat,M,N)),Z1) ) ).
tff(fact_74_zadd__int,axiom,
! [N: nat,M: nat] : ( plus_plus(int,semiring_1_of_nat(int,M),semiring_1_of_nat(int,N)) = semiring_1_of_nat(int,plus_plus(nat,M,N)) ) ).
tff(fact_75_int__1,axiom,
semiring_1_of_nat(int,one_one(nat)) = one_one(int) ).
tff(fact_76_nat__number__of__mult__left,axiom,
! [K: nat,V1: int,V: int] :
( ( ord_less(int,V,pls)
=> ( times_times(nat,number_number_of(nat,V),times_times(nat,number_number_of(nat,V1),K)) = zero_zero(nat) ) )
& ( ~ ord_less(int,V,pls)
=> ( times_times(nat,number_number_of(nat,V),times_times(nat,number_number_of(nat,V1),K)) = times_times(nat,number_number_of(nat,times_times(int,V,V1)),K) ) ) ) ).
tff(fact_77_nat__mult__2,axiom,
! [Z1: nat] : ( times_times(nat,number_number_of(nat,bit0(bit1(pls))),Z1) = plus_plus(nat,Z1,Z1) ) ).
tff(fact_78_nat__mult__2__right,axiom,
! [Z1: nat] : ( times_times(nat,Z1,number_number_of(nat,bit0(bit1(pls)))) = plus_plus(nat,Z1,Z1) ) ).
tff(fact_79_less__int__code_I16_J,axiom,
! [K2: int,K1: int] :
( ord_less(int,bit1(K1),bit1(K2))
<=> ord_less(int,K1,K2) ) ).
tff(fact_80_less__int__code_I13_J,axiom,
! [K2: int,K1: int] :
( ord_less(int,bit0(K1),bit0(K2))
<=> ord_less(int,K1,K2) ) ).
tff(fact_81_less__number__of__int__code,axiom,
! [L: int,K3: int] :
( ord_less(int,number_number_of(int,K3),number_number_of(int,L))
<=> ord_less(int,K3,L) ) ).
tff(fact_82_zmult__zless__mono2__lemma,axiom,
! [K: nat,J: int,I: int] :
( ord_less(int,I,J)
=> ( ord_less(nat,zero_zero(nat),K)
=> ord_less(int,times_times(int,semiring_1_of_nat(int,K),I),times_times(int,semiring_1_of_nat(int,K),J)) ) ) ).
tff(fact_83_Numeral1__eq1__nat,axiom,
one_one(nat) = number_number_of(nat,bit1(pls)) ).
tff(fact_84_sum__squares__gt__zero__iff,axiom,
! [A: $tType] :
( linord581940658strict(A)
=> ! [Y1: A,X1: A] :
( ord_less(A,zero_zero(A),plus_plus(A,times_times(A,X1,X1),times_times(A,Y1,Y1)))
<=> ( ( X1 != zero_zero(A) )
| ( Y1 != zero_zero(A) ) ) ) ) ).
tff(fact_85_not__sum__squares__lt__zero,axiom,
! [A: $tType] :
( linordered_ring(A)
=> ! [Y2: A,X2: A] : ~ ord_less(A,plus_plus(A,times_times(A,X2,X2),times_times(A,Y2,Y2)),zero_zero(A)) ) ).
tff(fact_86_zprime__2,axiom,
zprime(number_number_of(int,bit0(bit1(pls)))) ).
tff(fact_87_number__of__reorient,axiom,
! [A: $tType] :
( number(A)
=> ! [X1: A,W1: int] :
( ( number_number_of(A,W1) = X1 )
<=> ( X1 = number_number_of(A,W1) ) ) ) ).
tff(fact_88_number__of__is__id,axiom,
! [K: int] : ( number_number_of(int,K) = K ) ).
tff(fact_89_sum__squares__eq__zero__iff,axiom,
! [A: $tType] :
( linord581940658strict(A)
=> ! [Y1: A,X1: A] :
( ( plus_plus(A,times_times(A,X1,X1),times_times(A,Y1,Y1)) = zero_zero(A) )
<=> ( ( X1 = zero_zero(A) )
& ( Y1 = zero_zero(A) ) ) ) ) ).
tff(fact_90_less__int__code_I15_J,axiom,
! [K2: int,K1: int] :
( ord_less(int,bit1(K1),bit0(K2))
<=> ord_less(int,K1,K2) ) ).
tff(fact_91_int__int__eq,axiom,
! [Na: nat,Ma: nat] :
( ( semiring_1_of_nat(int,Ma) = semiring_1_of_nat(int,Na) )
<=> ( Ma = Na ) ) ).
tff(fact_92_semiring__numeral__0__eq__0,axiom,
! [A: $tType] :
( number_semiring(A)
=> ( number_number_of(A,pls) = zero_zero(A) ) ) ).
tff(fact_93_semiring__norm_I112_J,axiom,
! [A: $tType] :
( number_ring(A)
=> ( zero_zero(A) = number_number_of(A,pls) ) ) ).
tff(fact_94_zless__add1__eq,axiom,
! [Z: int,W1: int] :
( ord_less(int,W1,plus_plus(int,Z,one_one(int)))
<=> ( ord_less(int,W1,Z)
| ( W1 = Z ) ) ) ).
tff(fact_95_power__even__eq,axiom,
! [A: $tType] :
( monoid_mult(A)
=> ! [N: nat,A1: A] : ( power_power(A,A1,times_times(nat,number_number_of(nat,bit0(bit1(pls))),N)) = power_power(A,power_power(A,A1,N),number_number_of(nat,bit0(bit1(pls)))) ) ) ).
tff(fact_96_semiring__norm_I113_J,axiom,
zero_zero(nat) = number_number_of(nat,pls) ).
tff(fact_97_number__of__Bit0,axiom,
! [A: $tType] :
( number_ring(A)
=> ! [W: int] : ( number_number_of(A,bit0(W)) = plus_plus(A,plus_plus(A,zero_zero(A),number_number_of(A,W)),number_number_of(A,W)) ) ) ).
%----Arities (17)
tff(arity_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord219039673up_add(int) ).
tff(arity_Int_Oint___Rings_Oring__1__no__zero__divisors,axiom,
ring_11004092258visors(int) ).
tff(arity_Int_Oint___Rings_Olinordered__ring__strict,axiom,
linord581940658strict(int) ).
tff(arity_Int_Oint___Rings_Olinordered__ring,axiom,
linordered_ring(int) ).
tff(arity_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom(int) ).
tff(arity_Int_Oint___Int_Onumber__semiring,axiom,
number_semiring(int) ).
tff(arity_Int_Oint___Groups_Omonoid__mult,axiom,
monoid_mult(int) ).
tff(arity_Int_Oint___Rings_Osemiring__1,axiom,
semiring_1(int) ).
tff(arity_Int_Oint___Int_Oring__char__0,axiom,
ring_char_0(int) ).
tff(arity_Int_Oint___Int_Onumber__ring,axiom,
number_ring(int) ).
tff(arity_Int_Oint___Rings_Osemiring,axiom,
semiring(int) ).
tff(arity_Int_Oint___Int_Onumber,axiom,
number(int) ).
tff(arity_Nat_Onat___Int_Onumber__semiring,axiom,
number_semiring(nat) ).
tff(arity_Nat_Onat___Groups_Omonoid__mult,axiom,
monoid_mult(nat) ).
tff(arity_Nat_Onat___Rings_Osemiring__1,axiom,
semiring_1(nat) ).
tff(arity_Nat_Onat___Rings_Osemiring,axiom,
semiring(nat) ).
tff(arity_Nat_Onat___Int_Onumber,axiom,
number(nat) ).
%----Helper facts (2)
tff(help_pp_1_1_U,axiom,
~ pp(fFalse) ).
tff(help_pp_2_1_U,axiom,
pp(fTrue) ).
%----Conjectures (2)
tff(conj_0,hypothesis,
! [X: int,Y: int] :
( ( plus_plus(int,power_power(int,X,number_number_of(nat,bit0(bit1(pls)))),power_power(int,Y,number_number_of(nat,bit0(bit1(pls))))) = times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,n))) )
=> thesis ) ).
tff(conj_1,conjecture,
thesis ).
%------------------------------------------------------------------------------