TPTP Problem File: NUM977_5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : NUM977_5 : TPTP v9.0.0. Released v6.0.0.
% Domain   : Number Theory
% Problem  : Sum of two squares line 120
% Version  : Especial.
% English  : 

% Refs     : [BN10]  Boehme & Nipkow (2010), Sledgehammer: Judgement Day
%          : [Bla13] Blanchette (2011), Email to Geoff Sutcliffe
% Source   : [Bla13]
% Names    : s2s_120 [Bla13]

% Status   : Theorem
% Rating   : 0.00 v6.4.0
% Syntax   : Number of formulae    :  148 (  56 unt;  32 typ;   0 def)
%            Number of atoms       :  209 (  67 equ)
%            Maximal formula atoms :    7 (   1 avg)
%            Number of connectives :  119 (  26   ~;   2   |;  10   &)
%                                         (  31 <=>;  50  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of types       :    4 (   3 usr)
%            Number of type conns  :   17 (  12   >;   5   *;   0   +;   0  <<)
%            Number of predicates  :   15 (  13 usr;   1 prp; 0-3 aty)
%            Number of functors    :   16 (  16 usr;   6 con; 0-4 aty)
%            Number of variables   :  183 ( 165   !;   0   ?; 183   :)
%                                         (  18  !>;   0  ?*;   0  @-;   0  @+)
% SPC      : TF1_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2011-12-13 16:24:45
%------------------------------------------------------------------------------
%----Should-be-implicit typings (4)
tff(ty_tc_HOL_Obool,type,
    bool: $tType ).

tff(ty_tc_Int_Oint,type,
    int: $tType ).

tff(ty_tc_Nat_Onat,type,
    nat: $tType ).

tff(ty_tc_fun,type,
    fun: ( $tType * $tType ) > $tType ).

%----Explicit typings (28)
tff(sy_cl_Int_Onumber,type,
    number: 
      !>[A: $tType] : $o ).

tff(sy_cl_Rings_Osemiring,type,
    semiring: 
      !>[A: $tType] : $o ).

tff(sy_cl_Int_Onumber__ring,type,
    number_ring: 
      !>[A: $tType] : $o ).

tff(sy_cl_Int_Oring__char__0,type,
    ring_char_0: 
      !>[A: $tType] : $o ).

tff(sy_cl_Rings_Osemiring__1,type,
    semiring_1: 
      !>[A: $tType] : $o ).

tff(sy_cl_Nat_Osemiring__char__0,type,
    semiring_char_0: 
      !>[A: $tType] : $o ).

tff(sy_cl_Rings_Olinordered__idom,type,
    linordered_idom: 
      !>[A: $tType] : $o ).

tff(sy_cl_Rings_Olinordered__semidom,type,
    linordered_semidom: 
      !>[A: $tType] : $o ).

tff(sy_cl_Groups_Olinordered__ab__group__add,type,
    linord219039673up_add: 
      !>[A: $tType] : $o ).

tff(sy_c_Groups_Oone__class_Oone,type,
    one_one: 
      !>[A: $tType] : A ).

tff(sy_c_Groups_Oplus__class_Oplus,type,
    plus_plus: 
      !>[A: $tType] : ( ( A * A ) > A ) ).

tff(sy_c_Groups_Otimes__class_Otimes,type,
    times_times: 
      !>[A: $tType] : ( ( A * A ) > A ) ).

tff(sy_c_Groups_Ozero__class_Ozero,type,
    zero_zero: 
      !>[A: $tType] : A ).

tff(sy_c_IntPrimes_Ozprime,type,
    zprime: int > $o ).

tff(sy_c_Int_OBit0,type,
    bit0: int > int ).

tff(sy_c_Int_OBit1,type,
    bit1: int > int ).

tff(sy_c_Int_OPls,type,
    pls: int ).

tff(sy_c_Int_Onumber__class_Onumber__of,type,
    number_number_of: 
      !>[A: $tType] : ( int > A ) ).

tff(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
    semiring_1_of_nat: 
      !>[A: $tType] : ( nat > A ) ).

tff(sy_c_Orderings_Oord__class_Oless,type,
    ord_less: 
      !>[A: $tType] : ( ( A * A ) > $o ) ).

tff(sy_c_TwoSquares__Mirabelle__poiayhyqls_Ois__sum2sq,type,
    twoSqu1567020053sum2sq: int > $o ).

tff(sy_c_aa,type,
    aa: 
      !>[A: $tType,B: $tType] : ( ( fun(A,B) * A ) > B ) ).

tff(sy_c_fFalse,type,
    fFalse: bool ).

tff(sy_c_fTrue,type,
    fTrue: bool ).

tff(sy_c_pp,type,
    pp: bool > $o ).

tff(sy_v_m,type,
    m: int ).

tff(sy_v_t____,type,
    t: int ).

tff(sy_v_tn____,type,
    tn: nat ).

%----Relevant facts (98)
tff(fact_0_t1,axiom,
    ord_less(int,one_one(int),t) ).

tff(fact_1_nQ1,axiom,
    ~ twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,zero_zero(nat))))) ).

tff(fact_2__C0_C,axiom,
    ord_less(int,plus_plus(int,one_one(int),semiring_1_of_nat(int,zero_zero(nat))),plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).

tff(fact_3_p,axiom,
    zprime(plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).

tff(fact_4_is__mult__sum2sq,axiom,
    ! [Y: int,X: int] :
      ( twoSqu1567020053sum2sq(X)
     => ( twoSqu1567020053sum2sq(Y)
       => twoSqu1567020053sum2sq(times_times(int,X,Y)) ) ) ).

tff(fact_5_qf1pt,axiom,
    twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),t)) ).

tff(fact_6_t__l__p,axiom,
    ord_less(int,t,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).

tff(fact_7_add__special_I2_J,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [W1: int] : ( plus_plus(A,one_one(A),number_number_of(A,W1)) = number_number_of(A,plus_plus(int,bit1(pls),W1)) ) ) ).

tff(fact_8_add__special_I3_J,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [V: int] : ( plus_plus(A,number_number_of(A,V),one_one(A)) = number_number_of(A,plus_plus(int,V,bit1(pls))) ) ) ).

tff(fact_9_less__special_I2_J,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & linordered_idom(A) )
     => ! [Y1: int] :
          ( ord_less(A,one_one(A),number_number_of(A,Y1))
        <=> ord_less(int,bit1(pls),Y1) ) ) ).

tff(fact_10_less__special_I4_J,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & linordered_idom(A) )
     => ! [X1: int] :
          ( ord_less(A,number_number_of(A,X1),one_one(A))
        <=> ord_less(int,X1,bit1(pls)) ) ) ).

tff(fact_11_one__add__one__is__two,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ( plus_plus(A,one_one(A),one_one(A)) = number_number_of(A,bit0(bit1(pls))) ) ) ).

tff(fact_12_less__special_I1_J,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & linordered_idom(A) )
     => ! [Y1: int] :
          ( ord_less(A,zero_zero(A),number_number_of(A,Y1))
        <=> ord_less(int,pls,Y1) ) ) ).

tff(fact_13_less__special_I3_J,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & linordered_idom(A) )
     => ! [X1: int] :
          ( ord_less(A,number_number_of(A,X1),zero_zero(A))
        <=> ord_less(int,X1,pls) ) ) ).

tff(fact_14_mult__Bit1,axiom,
    ! [L: int,K: int] : ( times_times(int,bit1(K),L) = plus_plus(int,bit0(times_times(int,K,L)),L) ) ).

tff(fact_15_numeral__1__eq__1,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ( number_number_of(A,bit1(pls)) = one_one(A) ) ) ).

tff(fact_16_of__nat__0__less__iff,axiom,
    ! [A: $tType] :
      ( linordered_semidom(A)
     => ! [N: nat] :
          ( ord_less(A,zero_zero(A),semiring_1_of_nat(A,N))
        <=> ord_less(nat,zero_zero(nat),N) ) ) ).

tff(fact_17_tn0,axiom,
    ord_less(nat,zero_zero(nat),tn) ).

tff(fact_18_eq__number__of,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & ring_char_0(A) )
     => ! [Y1: int,X1: int] :
          ( ( number_number_of(A,X1) = number_number_of(A,Y1) )
        <=> ( X1 = Y1 ) ) ) ).

tff(fact_19_add__is__0,axiom,
    ! [N: nat,Ma: nat] :
      ( ( plus_plus(nat,Ma,N) = zero_zero(nat) )
    <=> ( ( Ma = zero_zero(nat) )
        & ( N = zero_zero(nat) ) ) ) ).

tff(fact_20_rel__simps_I51_J,axiom,
    ! [L1: int,K1: int] :
      ( ( bit1(K1) = bit1(L1) )
    <=> ( K1 = L1 ) ) ).

tff(fact_21_rel__simps_I48_J,axiom,
    ! [L1: int,K1: int] :
      ( ( bit0(K1) = bit0(L1) )
    <=> ( K1 = L1 ) ) ).

tff(fact_22_nat__add__left__cancel__less,axiom,
    ! [N: nat,Ma: nat,K1: nat] :
      ( ord_less(nat,plus_plus(nat,K1,Ma),plus_plus(nat,K1,N))
    <=> ord_less(nat,Ma,N) ) ).

tff(fact_23_of__nat__eq__iff,axiom,
    ! [A: $tType] :
      ( semiring_char_0(A)
     => ! [N: nat,Ma: nat] :
          ( ( semiring_1_of_nat(A,Ma) = semiring_1_of_nat(A,N) )
        <=> ( Ma = N ) ) ) ).

tff(fact_24_double__eq__0__iff,axiom,
    ! [A: $tType] :
      ( linord219039673up_add(A)
     => ! [A2: A] :
          ( ( plus_plus(A,A2,A2) = zero_zero(A) )
        <=> ( A2 = zero_zero(A) ) ) ) ).

tff(fact_25_rel__simps_I46_J,axiom,
    ! [K: int] : ( bit1(K) != pls ) ).

tff(fact_26_rel__simps_I39_J,axiom,
    ! [L: int] : ( pls != bit1(L) ) ).

tff(fact_27_rel__simps_I50_J,axiom,
    ! [L: int,K: int] : ( bit1(K) != bit0(L) ) ).

tff(fact_28_rel__simps_I49_J,axiom,
    ! [L: int,K: int] : ( bit0(K) != bit1(L) ) ).

tff(fact_29_rel__simps_I44_J,axiom,
    ! [K1: int] :
      ( ( bit0(K1) = pls )
    <=> ( K1 = pls ) ) ).

tff(fact_30_rel__simps_I38_J,axiom,
    ! [L1: int] :
      ( ( pls = bit0(L1) )
    <=> ( pls = L1 ) ) ).

tff(fact_31_Bit0__Pls,axiom,
    bit0(pls) = pls ).

tff(fact_32_add__gr__0,axiom,
    ! [N: nat,Ma: nat] :
      ( ord_less(nat,zero_zero(nat),plus_plus(nat,Ma,N))
    <=> ( ord_less(nat,zero_zero(nat),Ma)
        | ord_less(nat,zero_zero(nat),N) ) ) ).

tff(fact_33_less__zeroE,axiom,
    ! [N1: nat] : ~ ord_less(nat,N1,zero_zero(nat)) ).

tff(fact_34_less__nat__zero__code,axiom,
    ! [N1: nat] : ~ ord_less(nat,N1,zero_zero(nat)) ).

tff(fact_35_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero(nat) )
    <=> ord_less(nat,zero_zero(nat),N) ) ).

tff(fact_36_rel__simps_I17_J,axiom,
    ! [L1: int,K1: int] :
      ( ord_less(int,bit1(K1),bit1(L1))
    <=> ord_less(int,K1,L1) ) ).

tff(fact_37_rel__simps_I2_J,axiom,
    ~ ord_less(int,pls,pls) ).

tff(fact_38_rel__simps_I14_J,axiom,
    ! [L1: int,K1: int] :
      ( ord_less(int,bit0(K1),bit0(L1))
    <=> ord_less(int,K1,L1) ) ).

tff(fact_39_of__nat__add,axiom,
    ! [A: $tType] :
      ( semiring_1(A)
     => ! [N1: nat,M: nat] : ( semiring_1_of_nat(A,plus_plus(nat,M,N1)) = plus_plus(A,semiring_1_of_nat(A,M),semiring_1_of_nat(A,N1)) ) ) ).

tff(fact_40_of__nat__1,axiom,
    ! [A: $tType] :
      ( semiring_1(A)
     => ( semiring_1_of_nat(A,one_one(nat)) = one_one(A) ) ) ).

tff(fact_41_mult__Pls,axiom,
    ! [W1: int] : ( times_times(int,pls,W1) = pls ) ).

tff(fact_42_mult__Bit0,axiom,
    ! [L: int,K: int] : ( times_times(int,bit0(K),L) = bit0(times_times(int,K,L)) ) ).

tff(fact_43_add__Bit0__Bit0,axiom,
    ! [L: int,K: int] : ( plus_plus(int,bit0(K),bit0(L)) = bit0(plus_plus(int,K,L)) ) ).

tff(fact_44_p0,axiom,
    ord_less(int,zero_zero(int),plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int))) ).

tff(fact_45_left__distrib__number__of,axiom,
    ! [B: $tType] :
      ( ( number(B)
        & semiring(B) )
     => ! [V: int,B1: B,A1: B] : ( times_times(B,plus_plus(B,A1,B1),number_number_of(B,V)) = plus_plus(B,times_times(B,A1,number_number_of(B,V)),times_times(B,B1,number_number_of(B,V))) ) ) ).

tff(fact_46_right__distrib__number__of,axiom,
    ! [B: $tType] :
      ( ( number(B)
        & semiring(B) )
     => ! [C: B,B1: B,V: int] : ( times_times(B,number_number_of(B,V),plus_plus(B,B1,C)) = plus_plus(B,times_times(B,number_number_of(B,V),B1),times_times(B,number_number_of(B,V),C)) ) ) ).

tff(fact_47_number__of__Pls,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ( number_number_of(A,pls) = zero_zero(A) ) ) ).

tff(fact_48_less__number__of,axiom,
    ! [A: $tType] :
      ( ( number_ring(A)
        & linordered_idom(A) )
     => ! [Y1: int,X1: int] :
          ( ord_less(A,number_number_of(A,X1),number_number_of(A,Y1))
        <=> ord_less(int,X1,Y1) ) ) ).

tff(fact_49_mult__number__of__left,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [Z: A,W1: int,V: int] : ( times_times(A,number_number_of(A,V),times_times(A,number_number_of(A,W1),Z)) = times_times(A,number_number_of(A,times_times(int,V,W1)),Z) ) ) ).

tff(fact_50_arith__simps_I32_J,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [W1: int,V: int] : ( times_times(A,number_number_of(A,V),number_number_of(A,W1)) = number_number_of(A,times_times(int,V,W1)) ) ) ).

tff(fact_51_of__nat__0,axiom,
    ! [A: $tType] :
      ( semiring_1(A)
     => ( semiring_1_of_nat(A,zero_zero(nat)) = zero_zero(A) ) ) ).

tff(fact_52_add__number__of__left,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [Z: A,W1: int,V: int] : ( plus_plus(A,number_number_of(A,V),plus_plus(A,number_number_of(A,W1),Z)) = plus_plus(A,number_number_of(A,plus_plus(int,V,W1)),Z) ) ) ).

tff(fact_53_add__number__of__eq,axiom,
    ! [A: $tType] :
      ( number_ring(A)
     => ! [W1: int,V: int] : ( plus_plus(A,number_number_of(A,V),number_number_of(A,W1)) = number_number_of(A,plus_plus(int,V,W1)) ) ) ).

tff(fact_54_rel__simps_I12_J,axiom,
    ! [K1: int] :
      ( ord_less(int,bit1(K1),pls)
    <=> ord_less(int,K1,pls) ) ).

tff(fact_55_rel__simps_I16_J,axiom,
    ! [L1: int,K1: int] :
      ( ord_less(int,bit1(K1),bit0(L1))
    <=> ord_less(int,K1,L1) ) ).

tff(fact_56_of__nat__less__iff,axiom,
    ! [A: $tType] :
      ( linordered_semidom(A)
     => ! [N: nat,Ma: nat] :
          ( ord_less(A,semiring_1_of_nat(A,Ma),semiring_1_of_nat(A,N))
        <=> ord_less(nat,Ma,N) ) ) ).

tff(fact_57_rel__simps_I10_J,axiom,
    ! [K1: int] :
      ( ord_less(int,bit0(K1),pls)
    <=> ord_less(int,K1,pls) ) ).

tff(fact_58_rel__simps_I4_J,axiom,
    ! [K1: int] :
      ( ord_less(int,pls,bit0(K1))
    <=> ord_less(int,pls,K1) ) ).

tff(fact_59_add__Bit1__Bit0,axiom,
    ! [L: int,K: int] : ( plus_plus(int,bit1(K),bit0(L)) = bit1(plus_plus(int,K,L)) ) ).

tff(fact_60_add__Bit0__Bit1,axiom,
    ! [L: int,K: int] : ( plus_plus(int,bit0(K),bit1(L)) = bit1(plus_plus(int,K,L)) ) ).

tff(fact_61_less__not__refl,axiom,
    ! [N1: nat] : ~ ord_less(nat,N1,N1) ).

tff(fact_62_not__add__less1,axiom,
    ! [J: nat,I: nat] : ~ ord_less(nat,plus_plus(nat,I,J),I) ).

tff(fact_63_not__add__less2,axiom,
    ! [I: nat,J: nat] : ~ ord_less(nat,plus_plus(nat,J,I),I) ).

tff(fact_64_nat__neq__iff,axiom,
    ! [N: nat,Ma: nat] :
      ( ( Ma != N )
    <=> ( ord_less(nat,Ma,N)
        | ord_less(nat,N,Ma) ) ) ).

tff(fact_65_linorder__neqE__nat,axiom,
    ! [Y: nat,X: nat] :
      ( ( X != Y )
     => ( ~ ord_less(nat,X,Y)
       => ord_less(nat,Y,X) ) ) ).

tff(fact_66_less__irrefl__nat,axiom,
    ! [N1: nat] : ~ ord_less(nat,N1,N1) ).

tff(fact_67_less__not__refl2,axiom,
    ! [M: nat,N1: nat] :
      ( ord_less(nat,N1,M)
     => ( M != N1 ) ) ).

tff(fact_68_less__not__refl3,axiom,
    ! [T: nat,S: nat] :
      ( ord_less(nat,S,T)
     => ( S != T ) ) ).

tff(fact_69_trans__less__add1,axiom,
    ! [M: nat,J: nat,I: nat] :
      ( ord_less(nat,I,J)
     => ord_less(nat,I,plus_plus(nat,J,M)) ) ).

tff(fact_70_trans__less__add2,axiom,
    ! [M: nat,J: nat,I: nat] :
      ( ord_less(nat,I,J)
     => ord_less(nat,I,plus_plus(nat,M,J)) ) ).

tff(fact_71_add__less__mono1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ord_less(nat,I,J)
     => ord_less(nat,plus_plus(nat,I,K),plus_plus(nat,J,K)) ) ).

tff(fact_72_add__less__mono,axiom,
    ! [L: nat,K: nat,J: nat,I: nat] :
      ( ord_less(nat,I,J)
     => ( ord_less(nat,K,L)
       => ord_less(nat,plus_plus(nat,I,K),plus_plus(nat,J,L)) ) ) ).

tff(fact_73_less__add__eq__less,axiom,
    ! [N1: nat,M: nat,L: nat,K: nat] :
      ( ord_less(nat,K,L)
     => ( ( plus_plus(nat,M,L) = plus_plus(nat,K,N1) )
       => ord_less(nat,M,N1) ) ) ).

tff(fact_74_add__lessD1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ord_less(nat,plus_plus(nat,I,J),K)
     => ord_less(nat,I,K) ) ).

tff(fact_75_nat__less__cases,axiom,
    ! [P: fun(nat,fun(nat,bool)),N: nat,Ma: nat] :
      ( ( ord_less(nat,Ma,N)
       => pp(aa(nat,bool,aa(nat,fun(nat,bool),P,N),Ma)) )
     => ( ( ( Ma = N )
         => pp(aa(nat,bool,aa(nat,fun(nat,bool),P,N),Ma)) )
       => ( ( ord_less(nat,N,Ma)
           => pp(aa(nat,bool,aa(nat,fun(nat,bool),P,N),Ma)) )
         => pp(aa(nat,bool,aa(nat,fun(nat,bool),P,N),Ma)) ) ) ) ).

tff(fact_76_add__eq__self__zero,axiom,
    ! [N1: nat,M: nat] :
      ( ( plus_plus(nat,M,N1) = M )
     => ( N1 = zero_zero(nat) ) ) ).

tff(fact_77_Nat_Oadd__0__right,axiom,
    ! [M: nat] : ( plus_plus(nat,M,zero_zero(nat)) = M ) ).

tff(fact_78_plus__nat_Oadd__0,axiom,
    ! [N1: nat] : ( plus_plus(nat,zero_zero(nat),N1) = N1 ) ).

tff(fact_79_gr0I,axiom,
    ! [N1: nat] :
      ( ( N1 != zero_zero(nat) )
     => ord_less(nat,zero_zero(nat),N1) ) ).

tff(fact_80_gr__implies__not0,axiom,
    ! [N1: nat,M: nat] :
      ( ord_less(nat,M,N1)
     => ( N1 != zero_zero(nat) ) ) ).

tff(fact_81_not__less0,axiom,
    ! [N1: nat] : ~ ord_less(nat,N1,zero_zero(nat)) ).

tff(fact_82_Pls__def,axiom,
    pls = zero_zero(int) ).

tff(fact_83_zero__less__int__conv,axiom,
    ! [N: nat] :
      ( ord_less(int,zero_zero(int),semiring_1_of_nat(int,N))
    <=> ord_less(nat,zero_zero(nat),N) ) ).

tff(fact_84_zadd__int__left,axiom,
    ! [Z: int,N1: nat,M: nat] : ( plus_plus(int,semiring_1_of_nat(int,M),plus_plus(int,semiring_1_of_nat(int,N1),Z)) = plus_plus(int,semiring_1_of_nat(int,plus_plus(nat,M,N1)),Z) ) ).

tff(fact_85_zadd__int,axiom,
    ! [N1: nat,M: nat] : ( plus_plus(int,semiring_1_of_nat(int,M),semiring_1_of_nat(int,N1)) = semiring_1_of_nat(int,plus_plus(nat,M,N1)) ) ).

tff(fact_86_zless__int,axiom,
    ! [N: nat,Ma: nat] :
      ( ord_less(int,semiring_1_of_nat(int,Ma),semiring_1_of_nat(int,N))
    <=> ord_less(nat,Ma,N) ) ).

tff(fact_87_bin__less__0__simps_I4_J,axiom,
    ! [W: int] :
      ( ord_less(int,bit1(W),zero_zero(int))
    <=> ord_less(int,W,zero_zero(int)) ) ).

tff(fact_88_bin__less__0__simps_I1_J,axiom,
    ~ ord_less(int,pls,zero_zero(int)) ).

tff(fact_89_bin__less__0__simps_I3_J,axiom,
    ! [W: int] :
      ( ord_less(int,bit0(W),zero_zero(int))
    <=> ord_less(int,W,zero_zero(int)) ) ).

tff(fact_90_int__1,axiom,
    semiring_1_of_nat(int,one_one(nat)) = one_one(int) ).

tff(fact_91_zero__is__num__zero,axiom,
    zero_zero(int) = number_number_of(int,pls) ).

tff(fact_92_zmult__zless__mono2,axiom,
    ! [K: int,J: int,I: int] :
      ( ord_less(int,I,J)
     => ( ord_less(int,zero_zero(int),K)
       => ord_less(int,times_times(int,K,I),times_times(int,K,J)) ) ) ).

tff(fact_93_int__eq__0__conv,axiom,
    ! [N: nat] :
      ( ( semiring_1_of_nat(int,N) = zero_zero(int) )
    <=> ( N = zero_zero(nat) ) ) ).

tff(fact_94_int__0,axiom,
    semiring_1_of_nat(int,zero_zero(nat)) = zero_zero(int) ).

tff(fact_95_odd__nonzero,axiom,
    ! [Z: int] : ( plus_plus(int,plus_plus(int,one_one(int),Z),Z) != zero_zero(int) ) ).

tff(fact_96_int__less__0__conv,axiom,
    ! [K: nat] : ~ ord_less(int,semiring_1_of_nat(int,K),zero_zero(int)) ).

tff(fact_97_pos__zmult__eq__1__iff,axiom,
    ! [N: int,Ma: int] :
      ( ord_less(int,zero_zero(int),Ma)
     => ( ( times_times(int,Ma,N) = one_one(int) )
      <=> ( ( Ma = one_one(int) )
          & ( N = one_one(int) ) ) ) ) ).

%----Arities (14)
tff(arity_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
    linord219039673up_add(int) ).

tff(arity_Int_Oint___Rings_Olinordered__semidom,axiom,
    linordered_semidom(int) ).

tff(arity_Int_Oint___Rings_Olinordered__idom,axiom,
    linordered_idom(int) ).

tff(arity_Int_Oint___Nat_Osemiring__char__0,axiom,
    semiring_char_0(int) ).

tff(arity_Int_Oint___Rings_Osemiring__1,axiom,
    semiring_1(int) ).

tff(arity_Int_Oint___Int_Oring__char__0,axiom,
    ring_char_0(int) ).

tff(arity_Int_Oint___Int_Onumber__ring,axiom,
    number_ring(int) ).

tff(arity_Int_Oint___Rings_Osemiring,axiom,
    semiring(int) ).

tff(arity_Int_Oint___Int_Onumber,axiom,
    number(int) ).

tff(arity_Nat_Onat___Rings_Olinordered__semidom,axiom,
    linordered_semidom(nat) ).

tff(arity_Nat_Onat___Nat_Osemiring__char__0,axiom,
    semiring_char_0(nat) ).

tff(arity_Nat_Onat___Rings_Osemiring__1,axiom,
    semiring_1(nat) ).

tff(arity_Nat_Onat___Rings_Osemiring,axiom,
    semiring(nat) ).

tff(arity_Nat_Onat___Int_Onumber,axiom,
    number(nat) ).

%----Helper facts (2)
tff(help_pp_1_1_U,axiom,
    ~ pp(fFalse) ).

tff(help_pp_2_1_U,axiom,
    pp(fTrue) ).

%----Conjectures (2)
tff(conj_0,hypothesis,
    $true ).

tff(conj_1,conjecture,
    ~ twoSqu1567020053sum2sq(times_times(int,plus_plus(int,times_times(int,number_number_of(int,bit0(bit0(bit1(pls)))),m),one_one(int)),plus_plus(int,one_one(int),semiring_1_of_nat(int,zero_zero(nat))))) ).

%------------------------------------------------------------------------------