TPTP Problem File: NUM927_2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM927_2 : TPTP v9.0.0. Released v6.4.0.
% Domain : Number Theory
% Problem : Related to the Collatz Conjecture
% Version : Especial.
% English : There are two sequences of different length that lead to the
% same value.
% Refs :
% Source : [TPTP]
% Names :
% Status : CounterSatisfiable
% Rating : 1.00 v6.4.0
% Syntax : Number of formulae : 7 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 12 ( 8 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 31 ( 4 atm; 6 fun; 12 num; 9 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 3 ( 2 >; 1 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 2 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 7 !; 2 ?; 9 :)
% SPC : TF0_CSA_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(f_type,type,
f: $int > $int ).
tff(iterate_f_type,type,
iterate_f: ( $int * $int ) > $int ).
tff(f_odd,axiom,
! [X: $int] :
( ( $remainder_t(X,2) = 1 )
=> ( f(X) = $sum($product(3,X),1) ) ) ).
tff(f_even,axiom,
! [X: $int] :
( ( $remainder_t(X,2) = 0 )
=> ( f(X) = $quotient_t(X,2) ) ) ).
tff(iterate_f_base,axiom,
! [I: $int,X: $int] :
( ( I = 1 )
=> ( iterate_f(I,X) = f(X) ) ) ).
tff(iterate_f,axiom,
! [I: $int,X: $int] :
( $greater(I,1)
=> ( iterate_f(I,X) = iterate_f($difference(I,1),f(X)) ) ) ).
tff(iterates,conjecture,
! [X: $int] :
( $greatereq(X,1)
=> ? [I1: $int,I2: $int] :
( $greatereq(I1,1)
& $greater(I2,I1)
& ( iterate_f(I1,X) = iterate_f(I2,X) ) ) ) ).
%------------------------------------------------------------------------------