TPTP Problem File: NUM852+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM852+2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Number Theory
% Problem : holds(conseq_conjunct1(conseq_conjunct2(conseq(304))),484,0)
% Version : Especial: Reduced > Especial.
% English :
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [Kue09] Kuehlwein (2009), Email to Geoff Sutcliffe
% : [KC+10] Kuehlwein et al. (2010), Premise Selection in the Napr
% Source : [Kue09]
% Names :
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.22 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.23 v7.3.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.27 v6.3.0, 0.21 v6.2.0, 0.24 v6.1.0, 0.27 v6.0.0, 0.22 v5.4.0, 0.21 v5.3.0, 0.26 v5.2.0, 0.10 v5.1.0, 0.14 v5.0.0, 0.21 v4.1.0
% Syntax : Number of formulae : 20 ( 7 unt; 0 def)
% Number of atoms : 34 ( 14 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 20 ( 6 ~; 5 |; 0 &)
% ( 2 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 38 ( 36 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : From the Landau in Naproche 0.45 collection.
% : This version uses a filtered set of axioms.
%------------------------------------------------------------------------------
fof('holds(conseq_conjunct1(conseq_conjunct2(conseq(304))), 484, 0)',conjecture,
greater(vmul(vd481,vd469),vmul(vd480,vd469)) ).
fof('holds(conseq_conjunct1(conseq(304)), 483, 0)',axiom,
greater(vd481,vd480) ).
fof('holds(antec(304), 482, 0)',axiom,
less(vd480,vd481) ).
fof('ass(cond(303, 0), 0)',axiom,
! [Vd476,Vd477] :
( Vd476 = Vd477
=> vmul(Vd476,vd469) = vmul(Vd477,vd469) ) ).
fof('ass(cond(302, 0), 0)',axiom,
! [Vd470,Vd471] :
( greater(Vd470,Vd471)
=> greater(vplus(vmul(Vd471,vd469),vmul(vskolem9(Vd470,Vd471),vd469)),vmul(Vd471,vd469)) ) ).
fof('ass(cond(302, 0), 1)',axiom,
! [Vd470,Vd471] :
( greater(Vd470,Vd471)
=> vmul(vplus(Vd471,vskolem9(Vd470,Vd471)),vd469) = vplus(vmul(Vd471,vd469),vmul(vskolem9(Vd470,Vd471),vd469)) ) ).
fof('ass(cond(302, 0), 2)',axiom,
! [Vd470,Vd471] :
( greater(Vd470,Vd471)
=> vmul(Vd470,vd469) = vmul(vplus(Vd471,vskolem9(Vd470,Vd471)),vd469) ) ).
fof('ass(cond(302, 0), 3)',axiom,
! [Vd470,Vd471] :
( greater(Vd470,Vd471)
=> Vd470 = vplus(Vd471,vskolem9(Vd470,Vd471)) ) ).
fof('ass(cond(290, 0), 0)',axiom,
! [Vd444,Vd445,Vd446] : vmul(vmul(Vd444,Vd445),Vd446) = vmul(Vd444,vmul(Vd445,Vd446)) ).
fof('ass(cond(281, 0), 0)',axiom,
! [Vd432,Vd433,Vd434] : vmul(Vd432,vplus(Vd433,Vd434)) = vplus(vmul(Vd432,Vd433),vmul(Vd432,Vd434)) ).
fof('ass(cond(270, 0), 0)',axiom,
! [Vd418,Vd419] : vmul(Vd418,Vd419) = vmul(Vd419,Vd418) ).
fof('ass(cond(261, 0), 0)',axiom,
! [Vd408,Vd409] : vmul(vsucc(Vd408),Vd409) = vplus(vmul(Vd408,Vd409),Vd409) ).
fof('ass(cond(147, 0), 0)',axiom,
! [Vd226,Vd227] :
( less(Vd226,Vd227)
=> greater(Vd227,Vd226) ) ).
fof('ass(cond(140, 0), 0)',axiom,
! [Vd208,Vd209] :
( greater(Vd208,Vd209)
=> less(Vd209,Vd208) ) ).
fof('ass(cond(goal(130), 0), 0)',axiom,
! [Vd203,Vd204] :
( Vd203 = Vd204
| greater(Vd203,Vd204)
| less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 1)',axiom,
! [Vd203,Vd204] :
( Vd203 != Vd204
| ~ less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 2)',axiom,
! [Vd203,Vd204] :
( ~ greater(Vd203,Vd204)
| ~ less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 3)',axiom,
! [Vd203,Vd204] :
( Vd203 != Vd204
| ~ greater(Vd203,Vd204) ) ).
fof('def(cond(conseq(axiom(3)), 12), 1)',axiom,
! [Vd198,Vd199] :
( less(Vd199,Vd198)
<=> ? [Vd201] : Vd198 = vplus(Vd199,Vd201) ) ).
fof('def(cond(conseq(axiom(3)), 11), 1)',axiom,
! [Vd193,Vd194] :
( greater(Vd194,Vd193)
<=> ? [Vd196] : Vd194 = vplus(Vd193,Vd196) ) ).
%------------------------------------------------------------------------------