TPTP Problem File: NUM844+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM844+2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Number Theory
% Problem : holds(266,415,3)
% Version : Especial: Reduced > Especial.
% English :
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [Kue09] Kuehlwein (2009), Email to Geoff Sutcliffe
% : [KC+10] Kuehlwein et al. (2010), Premise Selection in the Napr
% Source : [Kue09]
% Names :
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.14 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.25 v6.2.0, 0.28 v6.1.0, 0.33 v6.0.0, 0.30 v5.5.0, 0.22 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.10 v5.0.0, 0.21 v4.1.0
% Syntax : Number of formulae : 20 ( 14 unt; 0 def)
% Number of atoms : 26 ( 22 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 10 ( 4 ~; 0 |; 2 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : From the Landau in Naproche 0.45 collection.
% : This version uses a filtered set of axioms.
%------------------------------------------------------------------------------
fof('holds(266, 415, 3)',conjecture,
vplus(vmul(vd411,vd413),vplus(vd413,vsucc(vd411))) = vplus(vmul(vd411,vd413),vplus(vsucc(vd411),vd413)) ).
fof('holds(266, 415, 2)',axiom,
vplus(vplus(vmul(vd411,vd413),vd413),vsucc(vd411)) = vplus(vmul(vd411,vd413),vplus(vd413,vsucc(vd411))) ).
fof('holds(266, 415, 1)',axiom,
vplus(vmul(vsucc(vd411),vd413),vsucc(vd411)) = vplus(vplus(vmul(vd411,vd413),vd413),vsucc(vd411)) ).
fof('holds(266, 415, 0)',axiom,
vmul(vsucc(vd411),vsucc(vd413)) = vplus(vmul(vsucc(vd411),vd413),vsucc(vd411)) ).
fof('holds(265, 414, 0)',axiom,
vmul(vsucc(vd411),vd413) = vplus(vmul(vd411,vd413),vd413) ).
fof('holds(264, 412, 2)',axiom,
vsucc(vmul(vd411,v1)) = vplus(vmul(vd411,v1),v1) ).
fof('holds(264, 412, 1)',axiom,
vsucc(vd411) = vsucc(vmul(vd411,v1)) ).
fof('holds(264, 412, 0)',axiom,
vmul(vsucc(vd411),v1) = vsucc(vd411) ).
fof('ass(cond(253, 0), 0)',axiom,
! [Vd400] : vmul(v1,Vd400) = Vd400 ).
fof('qu(cond(conseq(axiom(3)), 32), and(holds(definiens(249), 399, 0), holds(definiens(249), 398, 0)))',axiom,
! [Vd396,Vd397] :
( vmul(Vd396,vsucc(Vd397)) = vplus(vmul(Vd396,Vd397),Vd396)
& vmul(Vd396,v1) = Vd396 ) ).
fof('ass(cond(241, 0), 0)',axiom,
! [Vd386,Vd387] :
( less(Vd386,vplus(Vd387,v1))
=> leq(Vd386,Vd387) ) ).
fof('ass(cond(234, 0), 0)',axiom,
! [Vd375,Vd376] :
( greater(Vd375,Vd376)
=> geq(Vd375,vplus(Vd376,v1)) ) ).
fof('ass(cond(61, 0), 0)',axiom,
! [Vd78,Vd79] : vplus(Vd79,Vd78) = vplus(Vd78,Vd79) ).
fof('ass(cond(52, 0), 0)',axiom,
! [Vd68,Vd69] : vplus(vsucc(Vd68),Vd69) = vsucc(vplus(Vd68,Vd69)) ).
fof('ass(cond(43, 0), 0)',axiom,
! [Vd59] : vplus(v1,Vd59) = vsucc(Vd59) ).
fof('ass(cond(33, 0), 0)',axiom,
! [Vd46,Vd47,Vd48] : vplus(vplus(Vd46,Vd47),Vd48) = vplus(Vd46,vplus(Vd47,Vd48)) ).
fof('qu(cond(conseq(axiom(3)), 3), and(holds(definiens(29), 45, 0), holds(definiens(29), 44, 0)))',axiom,
! [Vd42,Vd43] :
( vplus(Vd42,vsucc(Vd43)) = vsucc(vplus(Vd42,Vd43))
& vplus(Vd42,v1) = vsucc(Vd42) ) ).
fof('ass(cond(20, 0), 0)',axiom,
! [Vd24] :
( Vd24 != v1
=> Vd24 = vsucc(vskolem2(Vd24)) ) ).
fof('ass(cond(12, 0), 0)',axiom,
! [Vd16] : vsucc(Vd16) != Vd16 ).
fof('ass(cond(6, 0), 0)',axiom,
! [Vd7,Vd8] :
( Vd7 != Vd8
=> vsucc(Vd7) != vsucc(Vd8) ) ).
%------------------------------------------------------------------------------