TPTP Problem File: NUM837+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM837+2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Number Theory
% Problem : qe(171)
% Version : Especial: Reduced > Especial.
% English :
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [Kue09] Kuehlwein (2009), Email to Geoff Sutcliffe
% : [KC+10] Kuehlwein et al. (2010), Premise Selection in the Napr
% Source : [Kue09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.17 v7.5.0, 0.16 v7.4.0, 0.17 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.22 v7.0.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.29 v6.2.0, 0.24 v6.1.0, 0.17 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.12 v4.1.0
% Syntax : Number of formulae : 22 ( 4 unt; 0 def)
% Number of atoms : 44 ( 22 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 36 ( 14 ~; 12 |; 1 &)
% ( 4 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 49 ( 40 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : From the Landau in Naproche 0.45 collection.
% : This version uses a filtered set of axioms.
%------------------------------------------------------------------------------
fof('qe(171)',conjecture,
? [Vd273] : vd269 = vplus(vd268,Vd273) ).
fof('(conjunct2(170),272,0)',axiom,
less(vd269,vd271) ).
fof('holds(conjunct1(170), 270, 0)',axiom,
less(vd268,vd269) ).
fof('ass(cond(163, 0), 0)',axiom,
! [Vd258,Vd259] :
( leq(Vd258,Vd259)
=> geq(Vd259,Vd258) ) ).
fof('ass(cond(158, 0), 0)',axiom,
! [Vd254,Vd255] :
( geq(Vd254,Vd255)
=> leq(Vd255,Vd254) ) ).
fof('def(cond(conseq(axiom(3)), 17), 1)',axiom,
! [Vd249,Vd250] :
( leq(Vd250,Vd249)
<=> ( less(Vd250,Vd249)
| Vd250 = Vd249 ) ) ).
fof('def(cond(conseq(axiom(3)), 16), 1)',axiom,
! [Vd244,Vd245] :
( geq(Vd245,Vd244)
<=> ( greater(Vd245,Vd244)
| Vd245 = Vd244 ) ) ).
fof('ass(cond(147, 0), 0)',axiom,
! [Vd226,Vd227] :
( less(Vd226,Vd227)
=> greater(Vd227,Vd226) ) ).
fof('ass(cond(140, 0), 0)',axiom,
! [Vd208,Vd209] :
( greater(Vd208,Vd209)
=> less(Vd209,Vd208) ) ).
fof('ass(cond(goal(130), 0), 0)',axiom,
! [Vd203,Vd204] :
( Vd203 = Vd204
| greater(Vd203,Vd204)
| less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 1)',axiom,
! [Vd203,Vd204] :
( Vd203 != Vd204
| ~ less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 2)',axiom,
! [Vd203,Vd204] :
( ~ greater(Vd203,Vd204)
| ~ less(Vd203,Vd204) ) ).
fof('ass(cond(goal(130), 0), 3)',axiom,
! [Vd203,Vd204] :
( Vd203 != Vd204
| ~ greater(Vd203,Vd204) ) ).
fof('def(cond(conseq(axiom(3)), 12), 1)',axiom,
! [Vd198,Vd199] :
( less(Vd199,Vd198)
<=> ? [Vd201] : Vd198 = vplus(Vd199,Vd201) ) ).
fof('def(cond(conseq(axiom(3)), 11), 1)',axiom,
! [Vd193,Vd194] :
( greater(Vd194,Vd193)
<=> ? [Vd196] : Vd194 = vplus(Vd193,Vd196) ) ).
fof('ass(cond(goal(88), 0), 0)',axiom,
! [Vd120,Vd121] :
( Vd120 = Vd121
| ? [Vd123] : Vd120 = vplus(Vd121,Vd123)
| ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 1)',axiom,
! [Vd120,Vd121] :
( Vd120 != Vd121
| ~ ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 2)',axiom,
! [Vd120,Vd121] :
( ~ ? [Vd123] : Vd120 = vplus(Vd121,Vd123)
| ~ ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 3)',axiom,
! [Vd120,Vd121] :
( Vd120 != Vd121
| ~ ? [Vd123] : Vd120 = vplus(Vd121,Vd123) ) ).
fof('ass(cond(81, 0), 0)',axiom,
! [Vd104,Vd105] :
( Vd104 != Vd105
=> ! [Vd107] : vplus(Vd107,Vd104) != vplus(Vd107,Vd105) ) ).
fof('ass(cond(33, 0), 0)',axiom,
! [Vd46,Vd47,Vd48] : vplus(vplus(Vd46,Vd47),Vd48) = vplus(Vd46,vplus(Vd47,Vd48)) ).
fof('qu(cond(conseq(axiom(3)), 3), and(holds(definiens(29), 45, 0), holds(definiens(29), 44, 0)))',axiom,
! [Vd42,Vd43] :
( vplus(Vd42,vsucc(Vd43)) = vsucc(vplus(Vd42,Vd43))
& vplus(Vd42,v1) = vsucc(Vd42) ) ).
%------------------------------------------------------------------------------