TPTP Problem File: NUM836+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM836+1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Number Theory
% Problem : dis(ex(cond(conseq(131),0),1))
% Version : Especial.
% English :
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [Kue09] Kuehlwein (2009), Email to Geoff Sutcliffe
% : [KC+10] Kuehlwein et al. (2010), Premise Selection in the Napr
% Source : [Kue09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.17 v8.1.0, 0.19 v7.4.0, 0.13 v7.3.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.22 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.33 v6.2.0, 0.32 v6.1.0, 0.30 v5.4.0, 0.32 v5.3.0, 0.41 v5.2.0, 0.25 v5.1.0, 0.29 v5.0.0, 0.25 v4.1.0
% Syntax : Number of formulae : 20 ( 7 unt; 0 def)
% Number of atoms : 34 ( 29 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 32 ( 18 ~; 7 |; 1 &)
% ( 2 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 42 ( 34 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : From the Landau in Naproche 0.45 collection.
%------------------------------------------------------------------------------
fof('dis(ex(cond(conseq(131), 0), 1))',conjecture,
( ~ greater(vd203,vd204)
| ~ less(vd203,vd204) ) ).
fof('dis(ex(cond(conseq(131), 0), 0))',axiom,
( vd203 != vd204
| ~ greater(vd203,vd204) ) ).
fof('def(cond(conseq(axiom(3)), 12), 1)',axiom,
! [Vd198,Vd199] :
( less(Vd199,Vd198)
<=> ? [Vd201] : Vd198 = vplus(Vd199,Vd201) ) ).
fof('def(cond(conseq(axiom(3)), 11), 1)',axiom,
! [Vd193,Vd194] :
( greater(Vd194,Vd193)
<=> ? [Vd196] : Vd194 = vplus(Vd193,Vd196) ) ).
fof('ass(cond(goal(88), 0), 0)',axiom,
! [Vd120,Vd121] :
( Vd120 = Vd121
| ? [Vd123] : Vd120 = vplus(Vd121,Vd123)
| ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 1)',axiom,
! [Vd120,Vd121] :
( Vd120 != Vd121
| ~ ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 2)',axiom,
! [Vd120,Vd121] :
( ~ ? [Vd123] : Vd120 = vplus(Vd121,Vd123)
| ~ ? [Vd125] : Vd121 = vplus(Vd120,Vd125) ) ).
fof('ass(cond(goal(88), 0), 3)',axiom,
! [Vd120,Vd121] :
( Vd120 != Vd121
| ~ ? [Vd123] : Vd120 = vplus(Vd121,Vd123) ) ).
fof('ass(cond(81, 0), 0)',axiom,
! [Vd104,Vd105] :
( Vd104 != Vd105
=> ! [Vd107] : vplus(Vd107,Vd104) != vplus(Vd107,Vd105) ) ).
fof('ass(cond(73, 0), 0)',axiom,
! [Vd92,Vd93] : Vd93 != vplus(Vd92,Vd93) ).
fof('ass(cond(61, 0), 0)',axiom,
! [Vd78,Vd79] : vplus(Vd79,Vd78) = vplus(Vd78,Vd79) ).
fof('ass(cond(52, 0), 0)',axiom,
! [Vd68,Vd69] : vplus(vsucc(Vd68),Vd69) = vsucc(vplus(Vd68,Vd69)) ).
fof('ass(cond(43, 0), 0)',axiom,
! [Vd59] : vplus(v1,Vd59) = vsucc(Vd59) ).
fof('ass(cond(33, 0), 0)',axiom,
! [Vd46,Vd47,Vd48] : vplus(vplus(Vd46,Vd47),Vd48) = vplus(Vd46,vplus(Vd47,Vd48)) ).
fof('qu(cond(conseq(axiom(3)), 3), and(holds(definiens(29), 45, 0), holds(definiens(29), 44, 0)))',axiom,
! [Vd42,Vd43] :
( vplus(Vd42,vsucc(Vd43)) = vsucc(vplus(Vd42,Vd43))
& vplus(Vd42,v1) = vsucc(Vd42) ) ).
fof('ass(cond(20, 0), 0)',axiom,
! [Vd24] :
( Vd24 != v1
=> Vd24 = vsucc(vskolem2(Vd24)) ) ).
fof('ass(cond(12, 0), 0)',axiom,
! [Vd16] : vsucc(Vd16) != Vd16 ).
fof('ass(cond(6, 0), 0)',axiom,
! [Vd7,Vd8] :
( Vd7 != Vd8
=> vsucc(Vd7) != vsucc(Vd8) ) ).
fof('qu(antec(axiom(3)), imp(antec(axiom(3))))',axiom,
! [Vd3,Vd4] :
( vsucc(Vd3) = vsucc(Vd4)
=> Vd3 = Vd4 ) ).
fof('qu(restrictor(axiom(1)), holds(scope(axiom(1)), 2, 0))',axiom,
! [Vd1] : vsucc(Vd1) != v1 ).
%------------------------------------------------------------------------------