TPTP Problem File: NUM834^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM834^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from PETER-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1123 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 67 ( 0 ~; 0 |; 5 &; 54 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 19 ( 0 ^; 18 !; 1 ?; 19 :)
% SPC : TH0_UNK_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
%------------------------------------------------------------------------------
thf(cS,type,
cS: $i > $i ).
thf(c0,type,
c0: $i ).
thf(cTHM603,conjecture,
? [Xr: $i > $i > $i > $o] :
( ! [Xn: $i] : ( Xr @ c0 @ Xn @ ( cS @ Xn ) )
& ! [Xm: $i,Xk: $i] :
( ( Xr @ Xm @ ( cS @ c0 ) @ Xk )
=> ( Xr @ ( cS @ Xm ) @ c0 @ Xk ) )
& ! [Xm: $i,Xn: $i,Xk: $i,Xl: $i] :
( ( Xr @ ( cS @ Xm ) @ Xn @ Xl )
=> ( ( Xr @ Xm @ Xl @ Xk )
=> ( Xr @ ( cS @ Xm ) @ ( cS @ Xn ) @ Xk ) ) )
& ! [T: $i > $i > $i > $o] :
( ( ! [Xn: $i] : ( T @ c0 @ Xn @ ( cS @ Xn ) )
& ! [Xm: $i,Xk: $i] :
( ( T @ Xm @ ( cS @ c0 ) @ Xk )
=> ( T @ ( cS @ Xm ) @ c0 @ Xk ) )
& ! [Xm: $i,Xn: $i,Xk: $i,Xl: $i] :
( ( T @ ( cS @ Xm ) @ Xn @ Xl )
=> ( ( T @ Xm @ Xl @ Xk )
=> ( T @ ( cS @ Xm ) @ ( cS @ Xn ) @ Xk ) ) ) )
=> ! [Xx: $i,Xy: $i,Xz: $i] :
( ( Xr @ Xx @ Xy @ Xz )
=> ( T @ Xx @ Xy @ Xz ) ) ) ) ).
%------------------------------------------------------------------------------