TPTP Problem File: NUM830^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM830^5 : TPTP v9.0.0. Bugfixed v5.3.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem from PA-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0798 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0
% Syntax : Number of formulae : 14 ( 4 unt; 9 typ; 4 def)
% Number of atoms : 17 ( 9 equ; 0 cnn)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 33 ( 0 ~; 0 |; 3 &; 29 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 2 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 6 ( 0 ^; 6 !; 0 ?; 6 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v5.3.0 - Fixed tType to $tType from last bugfixes.
%------------------------------------------------------------------------------
thf(n_type,type,
n: $tType ).
thf(c0_type,type,
c0: n ).
thf(cS_type,type,
cS: n > n ).
thf(c_plus_type,type,
c_plus: n > n > n ).
thf(c_star_type,type,
c_star: n > n > n ).
thf(cPA_1_type,type,
cPA_1: $o ).
thf(cPA_2_type,type,
cPA_2: $o ).
thf(cPA_3_type,type,
cPA_3: $o ).
thf(cPA_4_type,type,
cPA_4: $o ).
thf(cPA_1_def,definition,
( cPA_1
= ( ! [Xx: n] :
( ( c_plus @ Xx @ c0 )
= Xx ) ) ) ).
thf(cPA_2_def,definition,
( cPA_2
= ( ! [Xx: n,Xy: n] :
( ( c_plus @ Xx @ ( cS @ Xy ) )
= ( cS @ ( c_plus @ Xx @ Xy ) ) ) ) ) ).
thf(cPA_3_def,definition,
( cPA_3
= ( ! [Xx: n] :
( ( c_star @ Xx @ c0 )
= c0 ) ) ) ).
thf(cPA_4_def,definition,
( cPA_4
= ( ! [Xx: n,Xy: n] :
( ( c_star @ Xx @ ( cS @ Xy ) )
= ( c_plus @ ( c_star @ Xx @ Xy ) @ Xx ) ) ) ) ).
thf(cPA_THM1,conjecture,
( ( cPA_1
& cPA_2
& cPA_3
& cPA_4 )
=> ( ( c_star @ ( cS @ ( cS @ c0 ) ) @ ( cS @ ( cS @ c0 ) ) )
= ( c_plus @ ( cS @ ( cS @ c0 ) ) @ ( cS @ ( cS @ c0 ) ) ) ) ) ).
%------------------------------------------------------------------------------