TPTP Problem File: NUM813^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM813^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Number Theory (Induction on naturals)
% Problem : TPS problem THM303
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0571 [Bro09]
% : THM303 [TPS]
% Status : Theorem
% Rating : 1.00 v8.2.0, 0.92 v8.1.0, 1.00 v5.2.0
% Syntax : Number of formulae : 8 ( 1 unt; 6 typ; 1 def)
% Number of atoms : 13 ( 1 equ; 0 cnn)
% Maximal formula atoms : 11 ( 6 avg)
% Number of connectives : 33 ( 0 ~; 1 |; 6 &; 20 @)
% ( 1 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 7 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% :
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: $i ).
thf(cEVEN_type,type,
cEVEN: $i > $o ).
thf(cNUMBER_type,type,
cNUMBER: $i > $o ).
thf(cODD_type,type,
cODD: $i > $o ).
thf(cS_type,type,
cS: $i > $i ).
thf(cIND_type,type,
cIND: $o ).
thf(cIND_def,definition,
( cIND
= ( ! [Xp: $i > $o] :
( ( ( Xp @ c0 )
& ! [Xx: $i] :
( ( Xp @ Xx )
=> ( Xp @ ( cS @ Xx ) ) ) )
=> ! [Xx: $i] : ( Xp @ Xx ) ) ) ) ).
thf(cTHM303,conjecture,
( ( ( cEVEN @ c0 )
& ! [Xn: $i] :
( ( cEVEN @ Xn )
=> ( cEVEN @ ( cS @ ( cS @ Xn ) ) ) )
& ( cODD @ ( cS @ c0 ) )
& ! [Xn: $i] :
( ( cODD @ Xn )
=> ( cODD @ ( cS @ ( cS @ Xn ) ) ) )
& cIND
& ! [Xn: $i] :
( ( cNUMBER @ Xn )
<=> ( ( cEVEN @ Xn )
| ( cODD @ Xn ) ) ) )
=> ! [Xn: $i] : ( cNUMBER @ Xn ) ) ).
%------------------------------------------------------------------------------