TPTP Problem File: NUM796^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM796^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 99d
% Version : Especial.
% English : less (pl x0 z0) (pl y0 u0)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz99d [Lan30]
% : satz65d [Lan30]
% : satz75d [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v3.7.0
% Syntax : Number of formulae : 17 ( 3 unt; 10 typ; 0 def)
% Number of atoms : 12 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 37 ( 0 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 9 usr; 4 con; 0-2 aty)
% Number of variables : 10 ( 0 ^; 10 !; 0 ?; 10 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(rat_type,type,
rat: $tType ).
thf(x0,type,
x0: rat ).
thf(y0,type,
y0: rat ).
thf(z0,type,
z0: rat ).
thf(u0,type,
u0: rat ).
thf(less,type,
less: rat > rat > $o ).
thf(l,axiom,
less @ x0 @ y0 ).
thf(lessis,type,
lessis: rat > rat > $o ).
thf(k,axiom,
lessis @ z0 @ u0 ).
thf(pl,type,
pl: rat > rat > rat ).
thf(more,type,
more: rat > rat > $o ).
thf(satz82,axiom,
! [Xx0: rat,Xy0: rat] :
( ( more @ Xx0 @ Xy0 )
=> ( less @ Xy0 @ Xx0 ) ) ).
thf(moreis,type,
moreis: rat > rat > $o ).
thf(satz99b,axiom,
! [Xx0: rat,Xy0: rat,Xz0: rat,Xu0: rat] :
( ( more @ Xx0 @ Xy0 )
=> ( ( moreis @ Xz0 @ Xu0 )
=> ( more @ ( pl @ Xx0 @ Xz0 ) @ ( pl @ Xy0 @ Xu0 ) ) ) ) ).
thf(satz83,axiom,
! [Xx0: rat,Xy0: rat] :
( ( less @ Xx0 @ Xy0 )
=> ( more @ Xy0 @ Xx0 ) ) ).
thf(satz85,axiom,
! [Xx0: rat,Xy0: rat] :
( ( lessis @ Xx0 @ Xy0 )
=> ( moreis @ Xy0 @ Xx0 ) ) ).
thf(satz99d,conjecture,
less @ ( pl @ x0 @ z0 ) @ ( pl @ y0 @ u0 ) ).
%------------------------------------------------------------------------------