TPTP Problem File: NUM767^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM767^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 67b
% Version : Especial.
% English : eq v w
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz67b [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 13 ( 3 unt; 7 typ; 0 def)
% Number of atoms : 10 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 32 ( 0 ~; 0 |; 0 &; 28 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(v,type,
v: frac ).
thf(w,type,
w: frac ).
thf(eq,type,
eq: frac > frac > $o ).
thf(pf,type,
pf: frac > frac > frac ).
thf(e,axiom,
eq @ ( pf @ y @ v ) @ x ).
thf(f,axiom,
eq @ ( pf @ y @ w ) @ x ).
thf(satz63e,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( ( eq @ ( pf @ Xz @ Xx ) @ ( pf @ Xz @ Xy ) )
=> ( eq @ Xx @ Xy ) ) ).
thf(satz39,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( ( eq @ Xx @ Xy )
=> ( ( eq @ Xy @ Xz )
=> ( eq @ Xx @ Xz ) ) ) ).
thf(satz38,axiom,
! [Xx: frac,Xy: frac] :
( ( eq @ Xx @ Xy )
=> ( eq @ Xy @ Xx ) ) ).
thf(satz67b,conjecture,
eq @ v @ w ).
%------------------------------------------------------------------------------