TPTP Problem File: NUM765_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM765_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 66
% Version : Especial.
% English : ~(moref (pf x z) (pf y u)) -> eq (pf x z) (pf y u)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 15 ( 0 unt; 8 typ; 0 def)
% Number of atoms : 17 ( 0 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 19 ( 7 ~; 0 |; 0 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 3 >; 3 *; 0 +; 0 <<)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 13 ( 13 !; 0 ?; 13 :)
% SPC : TX0_THM_NEQ_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(frac_type,type,
frac: $tType ).
tff(x,type,
x: frac ).
tff(y,type,
y: frac ).
tff(z,type,
z: frac ).
tff(u,type,
u: frac ).
tff(moref,type,
moref: ( frac * frac ) > $o ).
tff(eq,type,
eq: ( frac * frac ) > $o ).
tff(m,axiom,
( ~ moref(x,y)
=> eq(x,y) ) ).
tff(n,axiom,
( ~ moref(z,u)
=> eq(z,u) ) ).
tff(pf,type,
pf: ( frac * frac ) > frac ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(satz56,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( eq(Xx,Xy)
=> ( eq(Xz,Xu)
=> eq(pf(Xx,Xz),pf(Xy,Xu)) ) ) ).
tff(satz65b,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( moref(Xx,Xy)
=> ( ( ~ moref(Xz,Xu)
=> eq(Xz,Xu) )
=> moref(pf(Xx,Xz),pf(Xy,Xu)) ) ) ).
tff(satz65a,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( ( ~ moref(Xx,Xy)
=> eq(Xx,Xy) )
=> ( moref(Xz,Xu)
=> moref(pf(Xx,Xz),pf(Xy,Xu)) ) ) ).
tff(satz66,conjecture,
( ~ moref(pf(x,z),pf(y,u))
=> eq(pf(x,z),pf(y,u)) ) ).
%------------------------------------------------------------------------------