TPTP Problem File: NUM757_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM757_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 63c
% Version : Especial.
% English : lessf x y
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 15 ( 2 unt; 8 typ; 0 def)
% Number of atoms : 15 ( 0 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 21 ( 11 ~; 0 |; 0 &)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 8 ( 4 >; 4 *; 0 +; 0 <<)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 11 ( 11 !; 0 ?; 11 :)
% SPC : TX0_THM_NEQ_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(frac_type,type,
frac: $tType ).
tff(x,type,
x: frac ).
tff(y,type,
y: frac ).
tff(z,type,
z: frac ).
tff(lessf,type,
lessf: ( frac * frac ) > $o ).
tff(pf,type,
pf: ( frac * frac ) > frac ).
tff(l,axiom,
lessf(pf(x,z),pf(y,z)) ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(moref,type,
moref: ( frac * frac ) > $o ).
tff(eq,type,
eq: ( frac * frac ) > $o ).
tff(satz41b,axiom,
! [Xx: frac,Xy: frac] :
~ ( ( eq(Xx,Xy)
=> ~ moref(Xx,Xy) )
=> ~ ~ ( ( moref(Xx,Xy)
=> ~ lessf(Xx,Xy) )
=> ~ ( lessf(Xx,Xy)
=> ~ eq(Xx,Xy) ) ) ) ).
tff(satz62a,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( moref(Xx,Xy)
=> moref(pf(Xx,Xz),pf(Xy,Xz)) ) ).
tff(satz62b,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( eq(Xx,Xy)
=> eq(pf(Xx,Xz),pf(Xy,Xz)) ) ).
tff(satz41a,axiom,
! [Xx: frac,Xy: frac] :
( ~ eq(Xx,Xy)
=> ( ~ moref(Xx,Xy)
=> lessf(Xx,Xy) ) ) ).
tff(satz63c,conjecture,
lessf(x,y) ).
%------------------------------------------------------------------------------