TPTP Problem File: NUM748^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM748^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 58
% Version : Especial.
% English : eq (fr (pl (ts (num x) (den y)) (ts (num y) (den x))) (ts (den x)
% (den y))) (fr (pl (ts (num y) (den x)) (ts (num x) (den y)))
% (ts (den y) (den x)))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz58 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 14 ( 4 unt; 10 typ; 0 def)
% Number of atoms : 4 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 44 ( 0 ~; 0 |; 0 &; 44 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 ^; 5 !; 0 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(eq,type,
eq: frac > frac > $o ).
thf(nat_type,type,
nat: $tType ).
thf(fr,type,
fr: nat > nat > frac ).
thf(pl,type,
pl: nat > nat > nat ).
thf(ts,type,
ts: nat > nat > nat ).
thf(num,type,
num: frac > nat ).
thf(den,type,
den: frac > nat ).
thf(satz37,axiom,
! [Xx: frac] : ( eq @ Xx @ Xx ) ).
thf(satz29,axiom,
! [Xx: nat,Xy: nat] :
( ( ts @ Xx @ Xy )
= ( ts @ Xy @ Xx ) ) ).
thf(satz6,axiom,
! [Xx: nat,Xy: nat] :
( ( pl @ Xx @ Xy )
= ( pl @ Xy @ Xx ) ) ).
thf(satz58,conjecture,
eq @ ( fr @ ( pl @ ( ts @ ( num @ x ) @ ( den @ y ) ) @ ( ts @ ( num @ y ) @ ( den @ x ) ) ) @ ( ts @ ( den @ x ) @ ( den @ y ) ) ) @ ( fr @ ( pl @ ( ts @ ( num @ y ) @ ( den @ x ) ) @ ( ts @ ( num @ x ) @ ( den @ y ) ) ) @ ( ts @ ( den @ y ) @ ( den @ x ) ) ) ).
%------------------------------------------------------------------------------