TPTP Problem File: NUM739_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM739_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 46
% Version : Especial.
% English : ~(moref z u) -> eq z u
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 15 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 15 ( 0 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 13 ( 4 ~; 0 |; 0 &)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 4 con; 0-0 aty)
% Number of variables : 10 ( 10 !; 0 ?; 10 :)
% SPC : TX0_THM_NEQ_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(frac_type,type,
frac: $tType ).
tff(x,type,
x: frac ).
tff(y,type,
y: frac ).
tff(z,type,
z: frac ).
tff(u,type,
u: frac ).
tff(moref,type,
moref: ( frac * frac ) > $o ).
tff(eq,type,
eq: ( frac * frac ) > $o ).
tff(m,axiom,
( ~ moref(x,y)
=> eq(x,y) ) ).
tff(e,axiom,
eq(x,z) ).
tff(f,axiom,
eq(y,u) ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(satz39,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( eq(Xx,Xy)
=> ( eq(Xy,Xz)
=> eq(Xx,Xz) ) ) ).
tff(satz38,axiom,
! [Xx: frac,Xy: frac] :
( eq(Xx,Xy)
=> eq(Xy,Xx) ) ).
tff(satz44,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( moref(Xx,Xy)
=> ( eq(Xx,Xz)
=> ( eq(Xy,Xu)
=> moref(Xz,Xu) ) ) ) ).
tff(satz46,conjecture,
( ~ moref(z,u)
=> eq(z,u) ) ).
%------------------------------------------------------------------------------