TPTP Problem File: NUM739^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM739^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 46
% Version : Especial.
% English : ~(moref z u) -> eq z u
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz46 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 15 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 15 ( 0 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 43 ( 4 ~; 0 |; 0 &; 30 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 10 ( 0 ^; 10 !; 0 ?; 10 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(z,type,
z: frac ).
thf(u,type,
u: frac ).
thf(moref,type,
moref: frac > frac > $o ).
thf(eq,type,
eq: frac > frac > $o ).
thf(m,axiom,
( ~ ( moref @ x @ y )
=> ( eq @ x @ y ) ) ).
thf(e,axiom,
eq @ x @ z ).
thf(f,axiom,
eq @ y @ u ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz39,axiom,
! [Xx: frac,Xy: frac,Xz: frac] :
( ( eq @ Xx @ Xy )
=> ( ( eq @ Xy @ Xz )
=> ( eq @ Xx @ Xz ) ) ) ).
thf(satz38,axiom,
! [Xx: frac,Xy: frac] :
( ( eq @ Xx @ Xy )
=> ( eq @ Xy @ Xx ) ) ).
thf(satz44,axiom,
! [Xx: frac,Xy: frac,Xz: frac,Xu: frac] :
( ( moref @ Xx @ Xy )
=> ( ( eq @ Xx @ Xz )
=> ( ( eq @ Xy @ Xu )
=> ( moref @ Xz @ Xu ) ) ) ) ).
thf(satz46,conjecture,
( ~ ( moref @ z @ u )
=> ( eq @ z @ u ) ) ).
%------------------------------------------------------------------------------