TPTP Problem File: NUM736^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM736^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 42
% Version : Especial.
% English : less (ts (num y) (den x)) (ts (num x) (den y))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz42 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v3.7.0
% Syntax : Number of formulae : 12 ( 2 unt; 9 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 25 ( 0 ~; 0 |; 0 &; 24 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 6 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 2 ( 0 ^; 2 !; 0 ?; 2 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(nat_type,type,
nat: $tType ).
thf(more,type,
more: nat > nat > $o ).
thf(ts,type,
ts: nat > nat > nat ).
thf(num,type,
num: frac > nat ).
thf(den,type,
den: frac > nat ).
thf(m,axiom,
more @ ( ts @ ( num @ x ) @ ( den @ y ) ) @ ( ts @ ( num @ y ) @ ( den @ x ) ) ).
thf(less,type,
less: nat > nat > $o ).
thf(satz11,axiom,
! [Xx: nat,Xy: nat] :
( ( more @ Xx @ Xy )
=> ( less @ Xy @ Xx ) ) ).
thf(satz42,conjecture,
less @ ( ts @ ( num @ y ) @ ( den @ x ) ) @ ( ts @ ( num @ x ) @ ( den @ y ) ) ).
%------------------------------------------------------------------------------