TPTP Problem File: NUM730_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM730_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 41
% Version : Especial.
% English : orec3 (ts (1x x) (2y y) = ts (1y y) (2x x)) (more (ts (1x x)
% (2y y)) (ts (1y y) (2x x))) (less (ts (1x x) (2y y)) (ts (1y y)
% (2x x)))
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 14 ( 2 unt; 12 typ; 0 def)
% Number of atoms : 8 ( 2 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 2 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of FOOLs : 6 ( 6 fml; 0 var)
% Number of types : 3 ( 2 usr)
% Number of type conns : 13 ( 8 >; 5 *; 0 +; 0 <<)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 2 ( 2 !; 0 ?; 2 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(frac_type,type,
frac: $tType ).
tff(x,type,
x: frac ).
tff(y,type,
y: frac ).
tff(orec3,type,
orec3: ( $o * $o * $o ) > $o ).
tff(nat_type,type,
nat: $tType ).
tff(ts,type,
ts: ( nat * nat ) > nat ).
tff(c1x,type,
c1x: frac > nat ).
tff(c2y,type,
c2y: frac > nat ).
tff(c1y,type,
c1y: frac > nat ).
tff(c2x,type,
c2x: frac > nat ).
tff(more,type,
more: ( nat * nat ) > $o ).
tff(less,type,
less: ( nat * nat ) > $o ).
tff(satz10,axiom,
! [Xx: nat,Xy: nat] : orec3(Xx = Xy,more(Xx,Xy),less(Xx,Xy)) ).
tff(satz41,conjecture,
orec3(ts(c1x(x),c2y(y)) = ts(c1y(y),c2x(x)),more(ts(c1x(x),c2y(y)),ts(c1y(y),c2x(x))),less(ts(c1x(x),c2y(y)),ts(c1y(y),c2x(x)))) ).
%------------------------------------------------------------------------------