TPTP Problem File: NUM730^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM730^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 41
% Version : Especial.
% English : orec3 (ts (1x x) (2y y) = ts (1y y) (2x x)) (more (ts (1x x)
% (2y y)) (ts (1y y) (2x x))) (less (ts (1x x) (2y y)) (ts (1y y)
% (2x x)))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz41 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 14 ( 0 unt; 12 typ; 0 def)
% Number of atoms : 8 ( 2 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 38 ( 0 ~; 0 |; 0 &; 38 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 2 con; 0-3 aty)
% Number of variables : 2 ( 0 ^; 2 !; 0 ?; 2 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(y,type,
y: frac ).
thf(orec3,type,
orec3: $o > $o > $o > $o ).
thf(nat_type,type,
nat: $tType ).
thf(ts,type,
ts: nat > nat > nat ).
thf(c1x,type,
c1x: frac > nat ).
thf(c2y,type,
c2y: frac > nat ).
thf(c1y,type,
c1y: frac > nat ).
thf(c2x,type,
c2x: frac > nat ).
thf(more,type,
more: nat > nat > $o ).
thf(less,type,
less: nat > nat > $o ).
thf(satz10,axiom,
! [Xx: nat,Xy: nat] : ( orec3 @ ( Xx = Xy ) @ ( more @ Xx @ Xy ) @ ( less @ Xx @ Xy ) ) ).
thf(satz41,conjecture,
( orec3
@ ( ( ts @ ( c1x @ x ) @ ( c2y @ y ) )
= ( ts @ ( c1y @ y ) @ ( c2x @ x ) ) )
@ ( more @ ( ts @ ( c1x @ x ) @ ( c2y @ y ) ) @ ( ts @ ( c1y @ y ) @ ( c2x @ x ) ) )
@ ( less @ ( ts @ ( c1x @ x ) @ ( c2y @ y ) ) @ ( ts @ ( c1y @ y ) @ ( c2x @ x ) ) ) ) ).
%------------------------------------------------------------------------------