TPTP Problem File: NUM728^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM728^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 40a
% Version : Especial.
% English : eq (fr (ts (1x x) n) (ts (2x x) n)) x
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz40a [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v3.7.0
% Syntax : Number of formulae : 12 ( 2 unt; 9 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 25 ( 0 ~; 0 |; 0 &; 24 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 8 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 4 ( 0 ^; 4 !; 0 ?; 4 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(frac_type,type,
frac: $tType ).
thf(x,type,
x: frac ).
thf(nat_type,type,
nat: $tType ).
thf(n,type,
n: nat ).
thf(eq,type,
eq: frac > frac > $o ).
thf(fr,type,
fr: nat > nat > frac ).
thf(ts,type,
ts: nat > nat > nat ).
thf(c1x,type,
c1x: frac > nat ).
thf(c2x,type,
c2x: frac > nat ).
thf(satz38,axiom,
! [Xx: frac,Xy: frac] :
( ( eq @ Xx @ Xy )
=> ( eq @ Xy @ Xx ) ) ).
thf(satz40,axiom,
! [Xx: frac,Xn: nat] : ( eq @ Xx @ ( fr @ ( ts @ ( c1x @ Xx ) @ Xn ) @ ( ts @ ( c2x @ Xx ) @ Xn ) ) ) ).
thf(satz40a,conjecture,
eq @ ( fr @ ( ts @ ( c1x @ x ) @ n ) @ ( ts @ ( c2x @ x ) @ n ) ) @ x ).
%------------------------------------------------------------------------------