TPTP Problem File: NUM713_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM713_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 32a
% Version : Especial.
% English : ~(forall x_0:nat.~(ts x z = pl (ts y z) x_0))
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 11 ( 4 unt; 6 typ; 0 def)
% Number of atoms : 4 ( 4 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 7 ( 6 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 8 !; 0 ?; 8 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(nat_type,type,
nat: $tType ).
tff(x,type,
x: nat ).
tff(y,type,
y: nat ).
tff(z,type,
z: nat ).
tff(pl,type,
pl: ( nat * nat ) > nat ).
tff(m,axiom,
~ ! [Xx_0: nat] : ( x != pl(y,Xx_0) ) ).
tff(ts,type,
ts: ( nat * nat ) > nat ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(satz29,axiom,
! [Xx: nat,Xy: nat] : ( ts(Xx,Xy) = ts(Xy,Xx) ) ).
tff(satz30,axiom,
! [Xx: nat,Xy: nat,Xz: nat] : ( ts(Xx,pl(Xy,Xz)) = pl(ts(Xx,Xy),ts(Xx,Xz)) ) ).
tff(satz32a,conjecture,
~ ! [Xx_0: nat] : ( ts(x,z) != pl(ts(y,z),Xx_0) ) ).
%------------------------------------------------------------------------------