TPTP Problem File: NUM704^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM704^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 27
% Version : Especial.
% English : ~(forall x:nat.~(~((forall x_0_0:nat.p x_0_0 -> ~(less x x_0_0) ->
% x = x_0_0) -> ~(p x))))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz27 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 21 ( 5 unt; 10 typ; 0 def)
% Number of atoms : 21 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 70 ( 13 ~; 0 |; 0 &; 43 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 14 ( 14 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 1 con; 0-2 aty)
% Number of variables : 19 ( 0 ^; 19 !; 0 ?; 19 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(p,type,
p: nat > $o ).
thf(s,axiom,
~ ! [Xx: nat] :
~ ( p @ Xx ) ).
thf(less,type,
less: nat > nat > $o ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(more,type,
more: nat > nat > $o ).
thf(satz10g,axiom,
! [Xx: nat,Xy: nat] :
( ( more @ Xx @ Xy )
=> ~ ( ~ ( less @ Xx @ Xy )
=> ( Xx = Xy ) ) ) ).
thf(pl,type,
pl: nat > nat > nat ).
thf(n_1,type,
n_1: nat ).
thf(satz18,axiom,
! [Xx: nat,Xy: nat] : ( more @ ( pl @ Xx @ Xy ) @ Xx ) ).
thf(set_type,type,
set: $tType ).
thf(esti,type,
esti: nat > set > $o ).
thf(setof,type,
setof: ( nat > $o ) > set ).
thf(estie,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( esti @ Xs @ ( setof @ Xp ) )
=> ( Xp @ Xs ) ) ).
thf(suc,type,
suc: nat > nat ).
thf(ax5,axiom,
! [Xs: set] :
( ( esti @ n_1 @ Xs )
=> ( ! [Xx: nat] :
( ( esti @ Xx @ Xs )
=> ( esti @ ( suc @ Xx ) @ Xs ) )
=> ! [Xx: nat] : ( esti @ Xx @ Xs ) ) ) ).
thf(estii,axiom,
! [Xp: nat > $o,Xs: nat] :
( ( Xp @ Xs )
=> ( esti @ Xs @ ( setof @ Xp ) ) ) ).
thf(satz24a,axiom,
! [Xx: nat] :
( ~ ( less @ n_1 @ Xx )
=> ( n_1 = Xx ) ) ).
thf(satz25b,axiom,
! [Xx: nat,Xy: nat] :
( ( less @ Xy @ Xx )
=> ( ~ ( less @ ( pl @ Xy @ n_1 ) @ Xx )
=> ( ( pl @ Xy @ n_1 )
= Xx ) ) ) ).
thf(satz4a,axiom,
! [Xx: nat] :
( ( pl @ Xx @ n_1 )
= ( suc @ Xx ) ) ).
thf(satz27,conjecture,
~ ! [Xx: nat] :
~ ~ ( ! [Xx_0_0: nat] :
( ( p @ Xx_0_0 )
=> ( ~ ( less @ Xx @ Xx_0_0 )
=> ( Xx = Xx_0_0 ) ) )
=> ~ ( p @ Xx ) ) ).
%------------------------------------------------------------------------------