TPTP Problem File: NUM694^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM694^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 24a
% Version : Especial.
% English : lessis n_1 x
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz24a [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v3.7.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 3 !; 0 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(lessis,type,
lessis: nat > nat > $o ).
thf(n_1,type,
n_1: nat ).
thf(moreis,type,
moreis: nat > nat > $o ).
thf(satz13,axiom,
! [Xx: nat,Xy: nat] :
( ( moreis @ Xx @ Xy )
=> ( lessis @ Xy @ Xx ) ) ).
thf(satz24,axiom,
! [Xx: nat] : ( moreis @ Xx @ n_1 ) ).
thf(satz24a,conjecture,
lessis @ n_1 @ x ).
%------------------------------------------------------------------------------