TPTP Problem File: NUM693_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM693_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 24
% Version : Especial.
% English : ~(more x n_1) -> x = n_1
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 11 ( 2 unt; 6 typ; 0 def)
% Number of atoms : 6 ( 4 equ)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 9 ( 6 ~; 0 |; 0 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 3 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 6 ( 6 !; 0 ?; 6 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(nat_type,type,
nat: $tType ).
tff(x,type,
x: nat ).
tff(more,type,
more: ( nat * nat ) > $o ).
tff(n_1,type,
n_1: nat ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(suc,type,
suc: nat > nat ).
tff(satz3,axiom,
! [Xx: nat] :
( ( Xx != n_1 )
=> ~ ! [Xx_0: nat] : ( Xx != suc(Xx_0) ) ) ).
tff(pl,type,
pl: ( nat * nat ) > nat ).
tff(satz18,axiom,
! [Xx: nat,Xy: nat] : more(pl(Xx,Xy),Xx) ).
tff(satz4g,axiom,
! [Xx: nat] : ( suc(Xx) = pl(n_1,Xx) ) ).
tff(satz24,conjecture,
( ~ more(x,n_1)
=> ( x = n_1 ) ) ).
%------------------------------------------------------------------------------