TPTP Problem File: NUM692^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM692^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 23a
% Version : Especial.
% English : lessis (pl x z) (pl y u)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz23a [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v3.7.0
% Syntax : Number of formulae : 14 ( 3 unt; 8 typ; 0 def)
% Number of atoms : 10 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 32 ( 0 ~; 0 |; 0 &; 28 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(u,type,
u: nat ).
thf(lessis,type,
lessis: nat > nat > $o ).
thf(l,axiom,
lessis @ x @ y ).
thf(k,axiom,
lessis @ z @ u ).
thf(ts,type,
ts: nat > nat > nat ).
thf(moreis,type,
moreis: nat > nat > $o ).
thf(satz13,axiom,
! [Xx: nat,Xy: nat] :
( ( moreis @ Xx @ Xy )
=> ( lessis @ Xy @ Xx ) ) ).
thf(satz23,axiom,
! [Xx: nat,Xy: nat,Xz: nat,Xu: nat] :
( ( moreis @ Xx @ Xy )
=> ( ( moreis @ Xz @ Xu )
=> ( moreis @ ( ts @ Xx @ Xz ) @ ( ts @ Xy @ Xu ) ) ) ) ).
thf(satz14,axiom,
! [Xx: nat,Xy: nat] :
( ( lessis @ Xx @ Xy )
=> ( moreis @ Xy @ Xx ) ) ).
thf(satz23a,conjecture,
lessis @ ( ts @ x @ z ) @ ( ts @ y @ u ) ).
%------------------------------------------------------------------------------