TPTP Problem File: NUM688^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM688^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 22b
% Version : Especial.
% English : more (pl x z) (pl y u)
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz22b [Lan30]
% : satz35b [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 13 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 10 ( 2 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 37 ( 3 ~; 0 |; 0 &; 28 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(u,type,
u: nat ).
thf(more,type,
more: nat > nat > $o ).
thf(m,axiom,
more @ x @ y ).
thf(n,axiom,
( ~ ( more @ z @ u )
=> ( z = u ) ) ).
thf(pl,type,
pl: nat > nat > nat ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz19h,axiom,
! [Xx: nat,Xy: nat,Xz: nat,Xu: nat] :
( ( Xx = Xy )
=> ( ( more @ Xz @ Xu )
=> ( more @ ( pl @ Xz @ Xx ) @ ( pl @ Xu @ Xy ) ) ) ) ).
thf(satz21,axiom,
! [Xx: nat,Xy: nat,Xz: nat,Xu: nat] :
( ( more @ Xx @ Xy )
=> ( ( more @ Xz @ Xu )
=> ( more @ ( pl @ Xx @ Xz ) @ ( pl @ Xy @ Xu ) ) ) ) ).
thf(satz22b,conjecture,
more @ ( pl @ x @ z ) @ ( pl @ y @ u ) ).
%------------------------------------------------------------------------------