TPTP Problem File: NUM687_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM687_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Number Theory
% Problem : Landau theorem 22a
% Version : Especial.
% English : more (pl x z) (pl y u)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 13 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 10 ( 2 equ)
% Maximal formula atoms : 3 ( 0 avg)
% Number of connectives : 9 ( 3 ~; 0 |; 0 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 2 ( 0 fml; 2 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 9 !; 0 ?; 9 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(nat_type,type,
nat: $tType ).
tff(x,type,
x: nat ).
tff(y,type,
y: nat ).
tff(z,type,
z: nat ).
tff(u,type,
u: nat ).
tff(more,type,
more: ( nat * nat ) > $o ).
tff(m,axiom,
( ~ more(x,y)
=> ( x = y ) ) ).
tff(n,axiom,
more(z,u) ).
tff(pl,type,
pl: ( nat * nat ) > nat ).
tff(et,axiom,
! [Xa: $o] :
( ~ ~ (Xa)
=> (Xa) ) ).
tff(satz19g,axiom,
! [Xx: nat,Xy: nat,Xz: nat,Xu: nat] :
( ( Xx = Xy )
=> ( more(Xz,Xu)
=> more(pl(Xx,Xz),pl(Xy,Xu)) ) ) ).
tff(satz21,axiom,
! [Xx: nat,Xy: nat,Xz: nat,Xu: nat] :
( more(Xx,Xy)
=> ( more(Xz,Xu)
=> more(pl(Xx,Xz),pl(Xy,Xu)) ) ) ).
tff(satz22a,conjecture,
more(pl(x,z),pl(y,u)) ).
%------------------------------------------------------------------------------