TPTP Problem File: NUM681^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM681^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 20b
% Version : Especial.
% English : x = y
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz20b [Lan30]
% : satz33b [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 14 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 15 ( 5 equ; 0 cnn)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 53 ( 11 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 11 ( 0 ^; 11 !; 0 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(pl,type,
pl: nat > nat > nat ).
thf(i,axiom,
( ( pl @ x @ z )
= ( pl @ y @ z ) ) ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(less,type,
less: nat > nat > $o ).
thf(more,type,
more: nat > nat > $o ).
thf(satz10b,axiom,
! [Xx: nat,Xy: nat] :
~ ( ( ( Xx = Xy )
=> ~ ( more @ Xx @ Xy ) )
=> ~ ~ ( ( ( more @ Xx @ Xy )
=> ~ ( less @ Xx @ Xy ) )
=> ~ ( ( less @ Xx @ Xy )
=> ( Xx != Xy ) ) ) ) ).
thf(satz19c,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( less @ Xx @ Xy )
=> ( less @ ( pl @ Xx @ Xz ) @ ( pl @ Xy @ Xz ) ) ) ).
thf(satz10a,axiom,
! [Xx: nat,Xy: nat] :
( ( Xx != Xy )
=> ( ~ ( more @ Xx @ Xy )
=> ( less @ Xx @ Xy ) ) ) ).
thf(satz19a,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( more @ Xx @ Xy )
=> ( more @ ( pl @ Xx @ Xz ) @ ( pl @ Xy @ Xz ) ) ) ).
thf(satz20b,conjecture,
x = y ).
%------------------------------------------------------------------------------