TPTP Problem File: NUM668^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM668^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 18
% Version : Especial.
% English : ~(forall x_0:nat.~(pl x y = pl x x_0))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz18 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 5 ( 1 unt; 4 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 6 ( 2 ~; 0 |; 0 &; 4 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 1 ( 1 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 1 !; 0 ?; 1 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(pl,type,
pl: nat > nat > nat ).
thf(satz18,conjecture,
~ ! [Xx_0: nat] :
( ( pl @ x @ y )
!= ( pl @ x @ Xx_0 ) ) ).
%------------------------------------------------------------------------------