TPTP Problem File: NUM667^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM667^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 17
% Version : Especial.
% English : ~(less x z) -> x = z
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz17 [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 11 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 14 ( 5 equ; 0 cnn)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 35 ( 7 ~; 0 |; 0 &; 18 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 7 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(y,type,
y: nat ).
thf(z,type,
z: nat ).
thf(less,type,
less: nat > nat > $o ).
thf(l,axiom,
( ~ ( less @ x @ y )
=> ( x = y ) ) ).
thf(k,axiom,
( ~ ( less @ y @ z )
=> ( y = z ) ) ).
thf(et,axiom,
! [Xa: $o] :
( ~ ~ Xa
=> Xa ) ).
thf(satz16a,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( ~ ( less @ Xx @ Xy )
=> ( Xx = Xy ) )
=> ( ( less @ Xy @ Xz )
=> ( less @ Xx @ Xz ) ) ) ).
thf(satz16b,axiom,
! [Xx: nat,Xy: nat,Xz: nat] :
( ( less @ Xx @ Xy )
=> ( ( ~ ( less @ Xy @ Xz )
=> ( Xy = Xz ) )
=> ( less @ Xx @ Xz ) ) ) ).
thf(satz17,conjecture,
( ~ ( less @ x @ z )
=> ( x = z ) ) ).
%------------------------------------------------------------------------------