TPTP Problem File: NUM638^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM638^1 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 3a
% Version : Especial.
% English : ~((forall x_0:nat.forall y:nat.x = suc x_0 -> x = suc y ->
% x_0 = y) -> ~(some (lambda u.x = suc u)))
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : satz3a [Lan30]
% Status : Theorem
% : Without extensionality : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v3.7.0
% Syntax : Number of formulae : 9 ( 1 unt; 5 typ; 0 def)
% Number of atoms : 11 ( 9 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 17 ( 4 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 2 ^; 5 !; 0 ?; 7 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(x,type,
x: nat ).
thf(n_1,type,
n_1: nat ).
thf(n,axiom,
x != n_1 ).
thf(suc,type,
suc: nat > nat ).
thf(some,type,
some: ( nat > $o ) > $o ).
thf(ax4,axiom,
! [Xx: nat,Xy: nat] :
( ( ( suc @ Xx )
= ( suc @ Xy ) )
=> ( Xx = Xy ) ) ).
thf(satz3,axiom,
! [Xx: nat] :
( ( Xx != n_1 )
=> ( some
@ ^ [Xu: nat] :
( Xx
= ( suc @ Xu ) ) ) ) ).
thf(satz3a,conjecture,
~ ( ! [Xx_0: nat,Xy: nat] :
( ( x
= ( suc @ Xx_0 ) )
=> ( ( x
= ( suc @ Xy ) )
=> ( Xx_0 = Xy ) ) )
=> ~ ( some
@ ^ [Xu: nat] :
( x
= ( suc @ Xu ) ) ) ) ).
%------------------------------------------------------------------------------