TPTP Problem File: NUM636^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM636^3 : TPTP v9.0.0. Released v3.7.0.
% Domain : Number Theory
% Problem : Landau theorem 2
% Version : Especial.
% English :
% Refs : [Lan30] Landau (1930), Grundlagen der Analysis
% : [vBJ79] van Benthem Jutting (1979), Checking Landau's "Grundla
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [TPTP]
% Names : satz2 [Lan30]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.33 v5.4.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v3.7.0
% Syntax : Number of formulae : 10 ( 4 unt; 3 typ; 1 def)
% Number of atoms : 10 ( 5 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 21 ( 2 ~; 0 |; 1 &; 14 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 9 ( 1 ^; 8 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(one_type,type,
one: $i ).
thf(succ_type,type,
succ: $i > $i ).
thf(one_is_first,axiom,
! [X: $i] :
( ( succ @ X )
!= one ) ).
thf(succ_injective,axiom,
! [X: $i,Y: $i] :
( ( ( succ @ X )
= ( succ @ Y ) )
=> ( X = Y ) ) ).
thf(induction,axiom,
! [M: $i > $o] :
( ( ( M @ one )
& ! [X: $i] :
( ( M @ X )
=> ( M @ ( succ @ X ) ) ) )
=> ! [Y: $i] : ( M @ Y ) ) ).
thf(m_type,type,
m: $i > $o ).
thf(m_defn,definition,
( m
= ( ^ [E: $i] :
( ( succ @ E )
!= E ) ) ) ).
thf(m_is_one,lemma,
m @ one ).
thf(m_is_next,lemma,
! [X: $i] :
( ( m @ X )
=> ( m @ ( succ @ X ) ) ) ).
thf(m_is_all,conjecture,
! [X: $i] : ( m @ X ) ).
%------------------------------------------------------------------------------