TPTP Problem File: NUM535+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM535+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory
% Problem : Ramsey's Infinite Theorem 04_01, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : ramsey_04_01.00 [Pas08]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.56 v8.2.0, 0.53 v8.1.0, 0.50 v7.5.0, 0.59 v7.4.0, 0.47 v7.3.0, 0.45 v7.1.0, 0.52 v7.0.0, 0.50 v6.4.0, 0.54 v6.2.0, 0.56 v6.1.0, 0.63 v6.0.0, 0.61 v5.5.0, 0.70 v5.4.0, 0.71 v5.3.0, 0.74 v5.2.0, 0.65 v5.1.0, 0.71 v5.0.0, 0.83 v4.0.1, 0.96 v4.0.0
% Syntax : Number of formulae : 19 ( 3 unt; 4 def)
% Number of atoms : 65 ( 7 equ)
% Maximal formula atoms : 8 ( 3 avg)
% Number of connectives : 50 ( 4 ~; 1 |; 18 &)
% ( 6 <=>; 21 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 29 ( 28 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mSetSort,axiom,
! [W0] :
( aSet0(W0)
=> $true ) ).
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mEOfElem,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aElementOf0(W1,W0)
=> aElement0(W1) ) ) ).
fof(mFinRel,axiom,
! [W0] :
( aSet0(W0)
=> ( isFinite0(W0)
=> $true ) ) ).
fof(mDefEmp,definition,
! [W0] :
( W0 = slcrc0
<=> ( aSet0(W0)
& ~ ? [W1] : aElementOf0(W1,W0) ) ) ).
fof(mEmpFin,axiom,
isFinite0(slcrc0) ).
fof(mCntRel,axiom,
! [W0] :
( aSet0(W0)
=> ( isCountable0(W0)
=> $true ) ) ).
fof(mCountNFin,axiom,
! [W0] :
( ( aSet0(W0)
& isCountable0(W0) )
=> ~ isFinite0(W0) ) ).
fof(mCountNFin_01,axiom,
! [W0] :
( ( aSet0(W0)
& isCountable0(W0) )
=> W0 != slcrc0 ) ).
fof(mDefSub,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
<=> ( aSet0(W1)
& ! [W2] :
( aElementOf0(W2,W1)
=> aElementOf0(W2,W0) ) ) ) ) ).
fof(mSubFSet,axiom,
! [W0] :
( ( aSet0(W0)
& isFinite0(W0) )
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> isFinite0(W1) ) ) ).
fof(mSubRefl,axiom,
! [W0] :
( aSet0(W0)
=> aSubsetOf0(W0,W0) ) ).
fof(mSubASymm,axiom,
! [W0,W1] :
( ( aSet0(W0)
& aSet0(W1) )
=> ( ( aSubsetOf0(W0,W1)
& aSubsetOf0(W1,W0) )
=> W0 = W1 ) ) ).
fof(mSubTrans,axiom,
! [W0,W1,W2] :
( ( aSet0(W0)
& aSet0(W1)
& aSet0(W2) )
=> ( ( aSubsetOf0(W0,W1)
& aSubsetOf0(W1,W2) )
=> aSubsetOf0(W0,W2) ) ) ).
fof(mDefCons,definition,
! [W0,W1] :
( ( aSet0(W0)
& aElement0(W1) )
=> ! [W2] :
( W2 = sdtpldt0(W0,W1)
<=> ( aSet0(W2)
& ! [W3] :
( aElementOf0(W3,W2)
<=> ( aElement0(W3)
& ( aElementOf0(W3,W0)
| W3 = W1 ) ) ) ) ) ) ).
fof(mDefDiff,definition,
! [W0,W1] :
( ( aSet0(W0)
& aElement0(W1) )
=> ! [W2] :
( W2 = sdtmndt0(W0,W1)
<=> ( aSet0(W2)
& ! [W3] :
( aElementOf0(W3,W2)
<=> ( aElement0(W3)
& aElementOf0(W3,W0)
& W3 != W1 ) ) ) ) ) ).
fof(m__617,hypothesis,
aSet0(xS) ).
fof(m__617_02,hypothesis,
aElementOf0(xx,xS) ).
fof(m__,conjecture,
( aSubsetOf0(xS,sdtpldt0(sdtmndt0(xS,xx),xx))
& aSubsetOf0(sdtpldt0(sdtmndt0(xS,xx),xx),xS) ) ).
%------------------------------------------------------------------------------