TPTP Problem File: NUM533+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM533+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory
% Problem : Ramsey's Infinite Theorem 03, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : ramsey_03.00 [Pas08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.11 v8.2.0, 0.14 v8.1.0, 0.06 v7.5.0, 0.09 v7.4.0, 0.13 v7.3.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.04 v6.1.0, 0.10 v6.0.0, 0.04 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.05 v5.1.0, 0.10 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.1, 0.57 v4.0.0
% Syntax : Number of formulae : 15 ( 1 unt; 2 def)
% Number of atoms : 45 ( 3 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 33 ( 3 ~; 0 |; 10 &)
% ( 2 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 4 con; 0-0 aty)
% Number of variables : 18 ( 17 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mSetSort,axiom,
! [W0] :
( aSet0(W0)
=> $true ) ).
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mEOfElem,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aElementOf0(W1,W0)
=> aElement0(W1) ) ) ).
fof(mFinRel,axiom,
! [W0] :
( aSet0(W0)
=> ( isFinite0(W0)
=> $true ) ) ).
fof(mDefEmp,definition,
! [W0] :
( W0 = slcrc0
<=> ( aSet0(W0)
& ~ ? [W1] : aElementOf0(W1,W0) ) ) ).
fof(mEmpFin,axiom,
isFinite0(slcrc0) ).
fof(mCntRel,axiom,
! [W0] :
( aSet0(W0)
=> ( isCountable0(W0)
=> $true ) ) ).
fof(mCountNFin,axiom,
! [W0] :
( ( aSet0(W0)
& isCountable0(W0) )
=> ~ isFinite0(W0) ) ).
fof(mCountNFin_01,axiom,
! [W0] :
( ( aSet0(W0)
& isCountable0(W0) )
=> W0 != slcrc0 ) ).
fof(mDefSub,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
<=> ( aSet0(W1)
& ! [W2] :
( aElementOf0(W2,W1)
=> aElementOf0(W2,W0) ) ) ) ) ).
fof(mSubFSet,axiom,
! [W0] :
( ( aSet0(W0)
& isFinite0(W0) )
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> isFinite0(W1) ) ) ).
fof(mSubRefl,axiom,
! [W0] :
( aSet0(W0)
=> aSubsetOf0(W0,W0) ) ).
fof(mSubASymm,axiom,
! [W0,W1] :
( ( aSet0(W0)
& aSet0(W1) )
=> ( ( aSubsetOf0(W0,W1)
& aSubsetOf0(W1,W0) )
=> W0 = W1 ) ) ).
fof(m__522,hypothesis,
( aSet0(xA)
& aSet0(xB)
& aSet0(xC) ) ).
fof(m__,conjecture,
( ( aSubsetOf0(xA,xB)
& aSubsetOf0(xB,xC) )
=> aSubsetOf0(xA,xC) ) ).
%------------------------------------------------------------------------------