TPTP Problem File: NUM461+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM461+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory
% Problem : Square root of a prime is irrational 05, 00 expansion
% Version : Especial.
% English :
% Refs : [LPV06] Lyaletski et al. (2006), SAD as a Mathematical Assista
% : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : primes_05.00 [Pas08]
% Status : Theorem
% Rating : 0.64 v9.0.0, 0.61 v8.2.0, 0.67 v8.1.0, 0.61 v7.5.0, 0.66 v7.4.0, 0.57 v7.3.0, 0.59 v7.1.0, 0.52 v7.0.0, 0.57 v6.4.0, 0.62 v6.3.0, 0.54 v6.2.0, 0.60 v6.1.0, 0.77 v6.0.0, 0.65 v5.5.0, 0.78 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 27 ( 2 unt; 2 def)
% Number of atoms : 100 ( 34 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 79 ( 6 ~; 4 |; 37 &)
% ( 2 <=>; 30 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 45 ( 44 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mNatSort,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> $true ) ).
fof(mSortsC,axiom,
aNaturalNumber0(sz00) ).
fof(mSortsC_01,axiom,
( aNaturalNumber0(sz10)
& sz10 != sz00 ) ).
fof(mSortsB,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> aNaturalNumber0(sdtpldt0(W0,W1)) ) ).
fof(mSortsB_02,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> aNaturalNumber0(sdtasdt0(W0,W1)) ) ).
fof(mAddComm,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> sdtpldt0(W0,W1) = sdtpldt0(W1,W0) ) ).
fof(mAddAsso,axiom,
! [W0,W1,W2] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> sdtpldt0(sdtpldt0(W0,W1),W2) = sdtpldt0(W0,sdtpldt0(W1,W2)) ) ).
fof(m_AddZero,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> ( sdtpldt0(W0,sz00) = W0
& W0 = sdtpldt0(sz00,W0) ) ) ).
fof(mMulComm,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> sdtasdt0(W0,W1) = sdtasdt0(W1,W0) ) ).
fof(mMulAsso,axiom,
! [W0,W1,W2] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> sdtasdt0(sdtasdt0(W0,W1),W2) = sdtasdt0(W0,sdtasdt0(W1,W2)) ) ).
fof(m_MulUnit,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> ( sdtasdt0(W0,sz10) = W0
& W0 = sdtasdt0(sz10,W0) ) ) ).
fof(m_MulZero,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> ( sdtasdt0(W0,sz00) = sz00
& sz00 = sdtasdt0(sz00,W0) ) ) ).
fof(mAMDistr,axiom,
! [W0,W1,W2] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> ( sdtasdt0(W0,sdtpldt0(W1,W2)) = sdtpldt0(sdtasdt0(W0,W1),sdtasdt0(W0,W2))
& sdtasdt0(sdtpldt0(W1,W2),W0) = sdtpldt0(sdtasdt0(W1,W0),sdtasdt0(W2,W0)) ) ) ).
fof(mAddCanc,axiom,
! [W0,W1,W2] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> ( ( sdtpldt0(W0,W1) = sdtpldt0(W0,W2)
| sdtpldt0(W1,W0) = sdtpldt0(W2,W0) )
=> W1 = W2 ) ) ).
fof(mMulCanc,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> ( W0 != sz00
=> ! [W1,W2] :
( ( aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> ( ( sdtasdt0(W0,W1) = sdtasdt0(W0,W2)
| sdtasdt0(W1,W0) = sdtasdt0(W2,W0) )
=> W1 = W2 ) ) ) ) ).
fof(mZeroAdd,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( sdtpldt0(W0,W1) = sz00
=> ( W0 = sz00
& W1 = sz00 ) ) ) ).
fof(mZeroMul,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( sdtasdt0(W0,W1) = sz00
=> ( W0 = sz00
| W1 = sz00 ) ) ) ).
fof(mDefLE,definition,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( sdtlseqdt0(W0,W1)
<=> ? [W2] :
( aNaturalNumber0(W2)
& sdtpldt0(W0,W2) = W1 ) ) ) ).
fof(mDefDiff,definition,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( sdtlseqdt0(W0,W1)
=> ! [W2] :
( W2 = sdtmndt0(W1,W0)
<=> ( aNaturalNumber0(W2)
& sdtpldt0(W0,W2) = W1 ) ) ) ) ).
fof(mLERefl,axiom,
! [W0] :
( aNaturalNumber0(W0)
=> sdtlseqdt0(W0,W0) ) ).
fof(mLEAsym,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W0) )
=> W0 = W1 ) ) ).
fof(mLETran,axiom,
! [W0,W1,W2] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1)
& aNaturalNumber0(W2) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W2) )
=> sdtlseqdt0(W0,W2) ) ) ).
fof(mLETotal,axiom,
! [W0,W1] :
( ( aNaturalNumber0(W0)
& aNaturalNumber0(W1) )
=> ( sdtlseqdt0(W0,W1)
| ( W1 != W0
& sdtlseqdt0(W1,W0) ) ) ) ).
fof(m__840,hypothesis,
( aNaturalNumber0(xl)
& aNaturalNumber0(xn) ) ).
fof(m__840_03,hypothesis,
( xl != xn
& sdtlseqdt0(xl,xn) ) ).
fof(m__873,hypothesis,
aNaturalNumber0(xm) ).
fof(m__,conjecture,
( sdtpldt0(xm,xl) != sdtpldt0(xm,xn)
& sdtlseqdt0(sdtpldt0(xm,xl),sdtpldt0(xm,xn))
& sdtpldt0(xl,xm) != sdtpldt0(xn,xm)
& sdtlseqdt0(sdtpldt0(xl,xm),sdtpldt0(xn,xm)) ) ).
%------------------------------------------------------------------------------