TPTP Problem File: NUM425+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM425+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Number Theory
% Problem : Fuerstenberg's infinitude of primes 04_01, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : fuerst_04_01.00 [Pas08]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.36 v8.2.0, 0.44 v8.1.0, 0.36 v7.5.0, 0.38 v7.4.0, 0.33 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.50 v6.2.0, 0.44 v6.1.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.70 v5.2.0, 0.65 v5.1.0, 0.67 v5.0.0, 0.71 v4.1.0, 0.78 v4.0.0
% Syntax : Number of formulae : 23 ( 3 unt; 2 def)
% Number of atoms : 74 ( 25 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 55 ( 4 ~; 1 |; 29 &)
% ( 2 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 35 ( 33 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mIntegers,axiom,
! [W0] :
( aInteger0(W0)
=> $true ) ).
fof(mIntZero,axiom,
aInteger0(sz00) ).
fof(mIntOne,axiom,
aInteger0(sz10) ).
fof(mIntNeg,axiom,
! [W0] :
( aInteger0(W0)
=> aInteger0(smndt0(W0)) ) ).
fof(mIntPlus,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1) )
=> aInteger0(sdtpldt0(W0,W1)) ) ).
fof(mIntMult,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1) )
=> aInteger0(sdtasdt0(W0,W1)) ) ).
fof(mAddAsso,axiom,
! [W0,W1,W2] :
( ( aInteger0(W0)
& aInteger0(W1)
& aInteger0(W2) )
=> sdtpldt0(W0,sdtpldt0(W1,W2)) = sdtpldt0(sdtpldt0(W0,W1),W2) ) ).
fof(mAddComm,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1) )
=> sdtpldt0(W0,W1) = sdtpldt0(W1,W0) ) ).
fof(mAddZero,axiom,
! [W0] :
( aInteger0(W0)
=> ( sdtpldt0(W0,sz00) = W0
& W0 = sdtpldt0(sz00,W0) ) ) ).
fof(mAddNeg,axiom,
! [W0] :
( aInteger0(W0)
=> ( sdtpldt0(W0,smndt0(W0)) = sz00
& sz00 = sdtpldt0(smndt0(W0),W0) ) ) ).
fof(mMulAsso,axiom,
! [W0,W1,W2] :
( ( aInteger0(W0)
& aInteger0(W1)
& aInteger0(W2) )
=> sdtasdt0(W0,sdtasdt0(W1,W2)) = sdtasdt0(sdtasdt0(W0,W1),W2) ) ).
fof(mMulComm,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1) )
=> sdtasdt0(W0,W1) = sdtasdt0(W1,W0) ) ).
fof(mMulOne,axiom,
! [W0] :
( aInteger0(W0)
=> ( sdtasdt0(W0,sz10) = W0
& W0 = sdtasdt0(sz10,W0) ) ) ).
fof(mDistrib,axiom,
! [W0,W1,W2] :
( ( aInteger0(W0)
& aInteger0(W1)
& aInteger0(W2) )
=> ( sdtasdt0(W0,sdtpldt0(W1,W2)) = sdtpldt0(sdtasdt0(W0,W1),sdtasdt0(W0,W2))
& sdtasdt0(sdtpldt0(W0,W1),W2) = sdtpldt0(sdtasdt0(W0,W2),sdtasdt0(W1,W2)) ) ) ).
fof(mMulZero,axiom,
! [W0] :
( aInteger0(W0)
=> ( sdtasdt0(W0,sz00) = sz00
& sz00 = sdtasdt0(sz00,W0) ) ) ).
fof(mMulMinOne,axiom,
! [W0] :
( aInteger0(W0)
=> ( sdtasdt0(smndt0(sz10),W0) = smndt0(W0)
& smndt0(W0) = sdtasdt0(W0,smndt0(sz10)) ) ) ).
fof(mZeroDiv,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1) )
=> ( sdtasdt0(W0,W1) = sz00
=> ( W0 = sz00
| W1 = sz00 ) ) ) ).
fof(mDivisor,definition,
! [W0] :
( aInteger0(W0)
=> ! [W1] :
( aDivisorOf0(W1,W0)
<=> ( aInteger0(W1)
& W1 != sz00
& ? [W2] :
( aInteger0(W2)
& sdtasdt0(W1,W2) = W0 ) ) ) ) ).
fof(mEquMod,definition,
! [W0,W1,W2] :
( ( aInteger0(W0)
& aInteger0(W1)
& aInteger0(W2)
& W2 != sz00 )
=> ( sdteqdtlpzmzozddtrp0(W0,W1,W2)
<=> aDivisorOf0(W2,sdtpldt0(W0,smndt0(W1))) ) ) ).
fof(mEquModRef,axiom,
! [W0,W1] :
( ( aInteger0(W0)
& aInteger0(W1)
& W1 != sz00 )
=> sdteqdtlpzmzozddtrp0(W0,W0,W1) ) ).
fof(m__704,hypothesis,
( aInteger0(xa)
& aInteger0(xb)
& aInteger0(xq)
& xq != sz00 ) ).
fof(m__724,hypothesis,
sdteqdtlpzmzozddtrp0(xa,xb,xq) ).
fof(m__,conjecture,
? [W0] :
( aInteger0(W0)
& sdtasdt0(xq,W0) = sdtpldt0(xa,smndt0(xb)) ) ).
%------------------------------------------------------------------------------