TPTP Problem File: NUM411+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM411+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Number Theory (Ordinals)
% Problem : Ordinal numbers, theorem 47
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Ban90] Bancerek (1990), The Ordinal Numbers
% [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : ordinal1__t47_ordinal1 [Urb06]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.08 v8.1.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.09 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.05 v5.1.0, 0.14 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.05 v3.4.0, 0.16 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 43 ( 6 unt; 0 def)
% Number of atoms : 123 ( 2 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 90 ( 10 ~; 1 |; 58 &)
% ( 2 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 16 ( 15 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-1 aty)
% Number of variables : 58 ( 42 !; 16 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(d8_ordinal1,axiom,
! [A,B] :
( ( relation(B)
& function(B)
& transfinite_sequence(B) )
=> ( transfinite_sequence_of(B,A)
<=> subset(relation_rng(B),A) ) ) ).
fof(dt_m1_ordinal1,axiom,
! [A,B] :
( transfinite_sequence_of(B,A)
=> ( relation(B)
& function(B)
& transfinite_sequence(B) ) ) ).
fof(existence_m1_ordinal1,axiom,
! [A] :
? [B] : transfinite_sequence_of(B,A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc6_funct_1,axiom,
! [A] :
( ( relation(A)
& relation_non_empty(A)
& function(A) )
=> with_non_empty_elements(relation_rng(A)) ) ).
fof(fc6_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_rng(A)) ) ).
fof(fc8_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_rng(A))
& relation(relation_rng(A)) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc4_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t1_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t47_ordinal1,conjecture,
! [A,B] :
( subset(A,B)
=> ! [C] :
( transfinite_sequence_of(C,A)
=> transfinite_sequence_of(C,B) ) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------