TPTP Problem File: NUM376+1.010.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM376+1.010 : TPTP v9.0.0. Released v3.2.0.
% Domain : Number Theory
% Problem : Find assignment in 0-10 to satisfy inequality, hard
% Version : [Cim05] axioms.
% English : Find an assignment to two variables which are in range, so that
% sum(sum(pred(x), succ(y)), sum(pred(y), succ(x))) and
% sum(sum(pred(x), succ(x)), sum(pred(y), succ(y))) are not equal.
% Refs : [Cim05] Cimatti (2006), Email to G. Sutcliffe
% Source : [Cim05]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v3.2.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 221 ( 221 equ)
% Maximal formula atoms : 221 ( 221 avg)
% Number of connectives : 276 ( 56 ~; 20 |; 200 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 204 ( 204 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 14 ( 14 usr; 11 con; 0-2 aty)
% Number of variables : 2 ( 0 !; 2 ?)
% SPC : FOF_UNS_RFO_PEQ
% Comments :
%------------------------------------------------------------------------------
fof(try_satisfy_this,axiom,
? [X,Y] :
( succ(n0) = n1
& succ(n1) = n2
& succ(n2) = n3
& succ(n3) = n4
& succ(n4) = n5
& succ(n5) = n6
& succ(n6) = n7
& succ(n7) = n8
& succ(n8) = n9
& succ(n9) = n10
& succ(n10) = n0
& pred(n0) = n10
& pred(n1) = n0
& pred(n2) = n1
& pred(n3) = n2
& pred(n4) = n3
& pred(n5) = n4
& pred(n6) = n5
& pred(n7) = n6
& pred(n8) = n7
& pred(n9) = n8
& pred(n10) = n9
& sum(n0,n0) = n0
& sum(n0,n1) = n1
& sum(n0,n2) = n2
& sum(n0,n3) = n3
& sum(n0,n4) = n4
& sum(n0,n5) = n5
& sum(n0,n6) = n6
& sum(n0,n7) = n7
& sum(n0,n8) = n8
& sum(n0,n9) = n9
& sum(n0,n10) = n10
& sum(n1,n0) = n1
& sum(n1,n1) = n2
& sum(n1,n2) = n3
& sum(n1,n3) = n4
& sum(n1,n4) = n5
& sum(n1,n5) = n6
& sum(n1,n6) = n7
& sum(n1,n7) = n8
& sum(n1,n8) = n9
& sum(n1,n9) = n10
& sum(n1,n10) = n0
& sum(n2,n0) = n2
& sum(n2,n1) = n3
& sum(n2,n2) = n4
& sum(n2,n3) = n5
& sum(n2,n4) = n6
& sum(n2,n5) = n7
& sum(n2,n6) = n8
& sum(n2,n7) = n9
& sum(n2,n8) = n10
& sum(n2,n9) = n0
& sum(n2,n10) = n1
& sum(n3,n0) = n3
& sum(n3,n1) = n4
& sum(n3,n2) = n5
& sum(n3,n3) = n6
& sum(n3,n4) = n7
& sum(n3,n5) = n8
& sum(n3,n6) = n9
& sum(n3,n7) = n10
& sum(n3,n8) = n0
& sum(n3,n9) = n1
& sum(n3,n10) = n2
& sum(n4,n0) = n4
& sum(n4,n1) = n5
& sum(n4,n2) = n6
& sum(n4,n3) = n7
& sum(n4,n4) = n8
& sum(n4,n5) = n9
& sum(n4,n6) = n10
& sum(n4,n7) = n0
& sum(n4,n8) = n1
& sum(n4,n9) = n2
& sum(n4,n10) = n3
& sum(n5,n0) = n5
& sum(n5,n1) = n6
& sum(n5,n2) = n7
& sum(n5,n3) = n8
& sum(n5,n4) = n9
& sum(n5,n5) = n10
& sum(n5,n6) = n0
& sum(n5,n7) = n1
& sum(n5,n8) = n2
& sum(n5,n9) = n3
& sum(n5,n10) = n4
& sum(n6,n0) = n6
& sum(n6,n1) = n7
& sum(n6,n2) = n8
& sum(n6,n3) = n9
& sum(n6,n4) = n10
& sum(n6,n5) = n0
& sum(n6,n6) = n1
& sum(n6,n7) = n2
& sum(n6,n8) = n3
& sum(n6,n9) = n4
& sum(n6,n10) = n5
& sum(n7,n0) = n7
& sum(n7,n1) = n8
& sum(n7,n2) = n9
& sum(n7,n3) = n10
& sum(n7,n4) = n0
& sum(n7,n5) = n1
& sum(n7,n6) = n2
& sum(n7,n7) = n3
& sum(n7,n8) = n4
& sum(n7,n9) = n5
& sum(n7,n10) = n6
& sum(n8,n0) = n8
& sum(n8,n1) = n9
& sum(n8,n2) = n10
& sum(n8,n3) = n0
& sum(n8,n4) = n1
& sum(n8,n5) = n2
& sum(n8,n6) = n3
& sum(n8,n7) = n4
& sum(n8,n8) = n5
& sum(n8,n9) = n6
& sum(n8,n10) = n7
& sum(n9,n0) = n9
& sum(n9,n1) = n10
& sum(n9,n2) = n0
& sum(n9,n3) = n1
& sum(n9,n4) = n2
& sum(n9,n5) = n3
& sum(n9,n6) = n4
& sum(n9,n7) = n5
& sum(n9,n8) = n6
& sum(n9,n9) = n7
& sum(n9,n10) = n8
& sum(n10,n0) = n10
& sum(n10,n1) = n0
& sum(n10,n2) = n1
& sum(n10,n3) = n2
& sum(n10,n4) = n3
& sum(n10,n5) = n4
& sum(n10,n6) = n5
& sum(n10,n7) = n6
& sum(n10,n8) = n7
& sum(n10,n9) = n8
& sum(n10,n10) = n9
& ( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5
| X = n6
| X = n7
| X = n8
| X = n9
| X = n10 )
& ( Y = n0
| Y = n1
| Y = n2
| Y = n3
| Y = n4
| Y = n5
| Y = n6
| Y = n7
| Y = n8
| Y = n9
| Y = n10 )
& sum(sum(pred(X),succ(Y)),sum(pred(Y),succ(X))) != sum(sum(pred(X),succ(X)),sum(pred(Y),succ(Y)))
& n0 != n1
& n0 != n2
& n0 != n3
& n0 != n4
& n0 != n5
& n0 != n6
& n0 != n7
& n0 != n8
& n0 != n9
& n0 != n10
& n1 != n2
& n1 != n3
& n1 != n4
& n1 != n5
& n1 != n6
& n1 != n7
& n1 != n8
& n1 != n9
& n1 != n10
& n2 != n3
& n2 != n4
& n2 != n5
& n2 != n6
& n2 != n7
& n2 != n8
& n2 != n9
& n2 != n10
& n3 != n4
& n3 != n5
& n3 != n6
& n3 != n7
& n3 != n8
& n3 != n9
& n3 != n10
& n4 != n5
& n4 != n6
& n4 != n7
& n4 != n8
& n4 != n9
& n4 != n10
& n5 != n6
& n5 != n7
& n5 != n8
& n5 != n9
& n5 != n10
& n6 != n7
& n6 != n8
& n6 != n9
& n6 != n10
& n7 != n8
& n7 != n9
& n7 != n10
& n8 != n9
& n8 != n10
& n9 != n10 ) ).