TPTP Problem File: NUM374+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : NUM374+3 : TPTP v9.0.0. Released v3.2.0.
% Domain : Number Theory
% Problem : Disprove Wilkie identity from Tarski's identities
% Version : [Zha05] axioms : Especial.
% English :
% Refs : [Zha05] Zhang (2005), Computer Search for Counterexamples to W
% Source : [Zha05]
% Names :
% Status : CounterSatisfiable
% Rating : 1.00 v3.2.0
% Syntax : Number of formulae : 13 ( 12 unt; 0 def)
% Number of atoms : 18 ( 18 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 6 ( 1 ~; 0 |; 4 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 31 ( 31 !; 0 ?)
% SPC : FOF_CSA_RFO_PEQ
% Comments : One value set to 0.
%------------------------------------------------------------------------------
fof(sum_symmetry,axiom,
! [X,Y] : sum(X,Y) = sum(Y,X) ).
fof(sum_associativity,axiom,
! [X,Y,Z] : sum(X,sum(Y,Z)) = sum(sum(X,Y),Z) ).
fof(product_identity,axiom,
! [X] : product(X,n1) = X ).
fof(product_symmetry,axiom,
! [X,Y] : product(X,Y) = product(Y,X) ).
fof(product_associativity,axiom,
! [X,Y,Z] : product(X,product(Y,Z)) = product(product(X,Y),Z) ).
fof(sum_product_distribution,axiom,
! [X,Y,Z] : product(X,sum(Y,Z)) = sum(product(X,Y),product(X,Z)) ).
fof(exponent_n1,axiom,
! [X] : exponent(n1,X) = n1 ).
fof(exponent_identity,axiom,
! [X] : exponent(X,n1) = X ).
fof(exponent_sum_product,axiom,
! [X,Y,Z] : exponent(X,sum(Y,Z)) = product(exponent(X,Y),exponent(X,Z)) ).
fof(exponent_product_distribution,axiom,
! [X,Y,Z] : exponent(product(X,Y),Z) = product(exponent(X,Z),exponent(Y,Z)) ).
fof(exponent_exponent,axiom,
! [X,Y,Z] : exponent(exponent(X,Y),Z) = exponent(X,product(Y,Z)) ).
fof(n0_n1,axiom,
n0 != n1 ).
fof(wilkie,conjecture,
! [C,P,Q,R,S,B] :
( ( C = product(n0,n0)
& P = sum(n1,n0)
& Q = sum(P,C)
& R = sum(n1,product(n0,C))
& S = sum(sum(n1,C),product(C,C)) )
=> product(exponent(sum(exponent(P,n0),exponent(Q,n0)),B),exponent(sum(exponent(R,B),exponent(S,B)),n0)) = product(exponent(sum(exponent(P,B),exponent(Q,B)),n0),exponent(sum(exponent(R,n0),exponent(S,n0)),B)) ) ).
%------------------------------------------------------------------------------